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Chapter 1: What is Statistics?

11

1.2

a. Population: all generation X age US citizens (specifically, assign a ‘1’ to those who
want to start their own business and a ‘0’ to those who do not, so that the population is
the set of 1’s and 0’s). Objective: to estimate the proportion of generation X age US
citizens who want to start their own business.

b. Population: all healthy adults in the US. Objective: to estimate the true mean body
temperature

c. Population: single family dwelling units in the city. Objective: to estimate the true
mean water consumption

d. Population: all tires manufactured by the company for the specific year. Objective: to
estimate the proportion of tires with unsafe tread.

e. Population: all adult residents of the particular state. Objective: to estimate the
proportion who favor a unicameral legislature.

f. Population: times until recurrence for all people who have had a particular disease.
Objective: to estimate the true average time until recurrence.

g. Population: lifetime measurements for all resistors of this type. Objective: to estimate
the true mean lifetime (in hours).
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a. This histogram is above.

b. Yes, it is quite windy there.

c. 11/45, or approx. 24.4%

d. it is not especially windy in the overall sample.
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1.3  The histogram is above.

Histogram of stocks
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14 a. The histogram is above.
b. 18/40 = 45%
C. 29/40 =72.5%

15 a. The categories with the largest grouping of students are 2.45 to 2.65 and 2.65 to 2.85.
(both have 7 students).
b. 7/30
c. 7/30 + 3/30 + 3/30 + 3/30 = 16/30

1.6 a. The modal category is 2 (quarts of milk). About 36% (9 people) of the 25 are in this
category.
b..2+.12+.04= .36
C. Note that 8% purchased 0 while 4% purchased 5. Thus, 1 —.08 — .04 = .88 purchased
between 1 and 4 quarts.
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a. There is a possibility of bimodality in the distribution.

b. There is a dip in heights at 68 inches.

c. If all of the students are roughly the same age, the bimodality could be a result of the
men/women distributions.

Histogram of AlIO
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a. The histogram is above.
b. The data appears to be bimodal. Llanederyn and Caldicot have lower sample values
than the other two.

a. Note that 9.7=12-2.3 and 14.3 =12 +2.3. So, (9.7, 14.3) should contain
approximately 68% of the values.

b. Note that 7.4 = 12 — 2(2.3) and 16.6 = 12 + 2(2.3). So, (7.4, 16.6) should contain
approximately 95% of the values.

c. From parts (a) and (b) above, 95% - 68% = 27% lie in both (14.3. 16.6) and (7.4, 9.7).
By symmetry, 13.5% should lie in (14.3, 16.6) so that 68% + 13.5% = 81.5% are in (9.7,
16.6)

d. Since 5.1 and 18.9 represent three standard deviations away from the mean, the
proportion outside of these limits is approximately 0.

a.l1l4-17=-3.

b. Since 68% lie within one standard deviation of the mean, 32% should lie outside. By
symmetry, 16% should lie below one standard deviation from the mean.

c. If normally distributed, approximately 16% of people would spend less than —3 hours
on the internet. Since this doesn’t make sense, the population is not normal.

n

a. Y c=c+c+..+c=nc
i=1
n

b. chi =c(y1+...+tyn)= Czyi
i1

i=1

CY(X+Y,)=Xi+yi+Xa Yot .+ XntYn=(i+XaF ... ¥ X))+ (Y1 +Y2+ ... TYn)
i=1
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Using the above, the numerator of s is »_ (Y, —=¥)* = D (¥, =2y, Y +¥V°) = > y;" -
i=l i=1 i=1

2y y;+ny* Since ny =) y;, wehave D (Y, =¥)* =Dy, —ny’. Let y =%Z Y,
i=1 i=1 i=1 i=1 i=1
to get the result.

6 6
112 Using the data, Dy, =14 and > y;>=40. So,s’= (40 - 14%/6)/5=1.47. So,s=1.21.
i=1 i=1

45 45
1.13 a. With Z y, =440.6 and z yi2 =5067.38, we have that y=9.79 and s =4.14.
i=1 i=1

b.
k interval frequency Exp. frequency
1 5.65,13.93 44 30.6
2 1.51, 18.07 44 42.75
3 -2.63,22.21 44 45

25 25
114 a With > y,=80.63and Y y,’ =500.7459, we have that y=3.23 and s =3.17.
i=1 i=1

b.
Kk interval frequency Exp. frequency
1 0.063, 6.397 21 17
2 -3.104, 9.564 23 23.75
3 -6.271,12.731 |25 25

40 40
115 a. With Zyi =175.48 and z y,” =906.4118, we have that y=4.39 and s = 1.87.

i=1 i=1

b.
k interval frequency Exp. frequency
1 2.52,6.26 35 27.2
2 0.65, 8.13 39 38
3 -1.22, 10 39 40

1.16 a. Without the extreme value, y=4.19 and s = 1.44.
b. These counts compare more favorably:

Kk interval frequency Exp. frequency
1 2.75,5.63 25 26.52

2 1.31,7.07 36 37.05

3 -0.13, 8.51 39 39
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For Ex. 1.2, range/4 = 7.35, while s = 4.14. For Ex. 1.3, range/4 = 3.04, while =s =3.17.
For Ex. 1.4, range/4 =2.32, while s = 1.87.

The approximation is (800-200)/4 = 150.

One standard deviation below the mean is 34 — 53 = —19. The empirical rule suggests
that 16% of all measurements should lie one standard deviation below the mean. Since
chloroform measurements cannot be negative, this population cannot be normally
distributed.

Since approximately 68% will fall between $390 ($420 — $30) to $450 ($420 + $30), the
proportion above $450 is approximately 16%.

(Similar to exercise 1.20) Having a gain of more than 20 pounds represents all
measurements greater than one standard deviation below the mean. By the empirical
rule, the proportion above this value is approximately 84%, so the manufacturer is
probably correct.

(See exercise 1.11) Zn:(yi -y) = Zn:yi - ny :Zn: Y, —Zn:yi =0.
i=1 i=1 i=1 i=1

a. (Similar to exercise 1.20) 95 sec = 1 standard deviation above 75 sec, so this
percentage is 16% by the empirical rule.

b. (35 sec., 115 sec) represents an interval of 2 standard deviations about the mean, so
approximately 95%

C. 2 minutes = 120 sec = 2.5 standard deviations above the mean. This is unlikely.

a. (112-78)/4=8.5

Histogram of hr

Frequency

80 90 100 110

hr

b. The histogram is above.

20 20
c. With )y, =1874.0and ) y," = 117,328.0, we have that y=93.7 and s = 9.55.
i=1 i=1
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1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

d k interval frequency Exp. frequency
1 84.1,103.2 13 13.6
2 74.6,112.8 20 19
3 65.0,122.4 20 20

a. (716-8)/4 =177
b. The figure is omitted.

88 88
c. With >y, = 18,550 and > y,” = 6,198,356, we have that y=210.8 and s = 162.17.

i=1 i=1

d k interval frequency Exp. frequency
1 48.6, 373 63 59.84
2 -113.5,535.1 82 83.6
3 -275.7,697.3 87 88

For Ex. 1.12, 3/1.21 =2.48. For Ex. 1.24, 34/9.55 = 3.56. For Ex. 1.25,708/162.17 =
4.37. The ratio increases as the sample size increases.

(64, 80) is one standard deviation about the mean, so 68% of 340 or approx. 231 scores.
(56, 88) 1s two standard deviations about the mean, so 95% of 340 or 323 scores.

(Similar to 1.23) 13 mg/L is one standard deviation below the mean, so 16%.

If the empirical rule is assumed, approximately 95% of all bearing should lie in (2.98,
3.02) — this interval represents two standard deviations about the mean. So,
approximately 5% will lie outside of this interval.

If u=0and 6 = 1.2, we expect 34% to be between 0 and 0 + 1.2 =1.2. Also,
approximately 95%/2 = 47.5% will lie between 0 and 2.4. So, 47.5% —34% = 13.5%
should lie between 1.2 and 2.4.

Assuming normality, approximately 95% will lie between 40 and 80 (the standard
deviation is 10). The percent below 40 is approximately 2.5% which is relatively
unlikely.

For a sample of size n, let N’ denote the number of measurements that fall outside the
interval y =+ ks, so that (n —n’)/n is the fraction that falls inside the interval. To show this

fraction is greater than or equal to 1 — 1/k?, note that

(N—1)s*= D (v, =¥)* + D.(¥;—¥)*, (both sums must be positive)

ieA ieb

where A= {i: lyi- Y| >ks} and B= {i: |yi— y| <ks}. We have that
D (Y -Y) = D ks’ =n'k’s’, since if i is in A, |yi— Y| > ks and there are n’ elements in
ieA ieA
A. Thus, we have that s> > k’s’n’/(n-1), or 1 > k’n’/(n-1)> k’n’/n. Thus, 1/k* > n’/n or
(h—n)n>1-1/k%
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With k =2, at least 1 — 1/4 = 75% should lie within 2 standard deviations of the mean.
The interval is (0.5, 10.5).

The point 13 is 13 — 5.5 = 7.5 units above the mean, or 7.5/2.5 = 3 standard deviations
above the mean. By Tchebysheff’s theorem, at least 1 — 1/3% = 8/9 will lie within 3
standard deviations of the mean. Thus, at most 1/9 of the values will exceed 13.

a. (172 — 108)/4 =16
15 15
b. With >y, =2041 and ) y,” = 281,807 we have that y=136.1 and s = 17.1

i=1 i=1
c.a=136.1-2(17.1)=101.9,b=136.1 +2(17.1) = 170.3.
d. There are 14 observations contained in this interval, and 14/15 =93.3%. 75%is a
lower bound.
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ex1.36

a. The histogram is above.
100 100

b. With >y, =66 and > Yy, =234 we have that ¥ =0.66 and s = 1.39.

i=1 i=l
c. Within two standard deviations: 95, within three standard deviations: 96. The
calculations agree with Tchebysheff’s theorem.

Since the lead readings must be non negative, 0 (the smallest possible value) is only 0.33
standard deviations from the mean. This indicates that the distribution is skewed.

By Tchebysheft’s theorem, at least 3/4 = 75% lie between (0, 140), at least 8/9 lie
between (0, 193), and at least 15/16 lie between (0, 246). The lower bounds are all
truncated a 0 since the measurement cannot be negative.
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21 A= {FF},B={MM}, C = {MF, FM, MM}. Then, ANB = 0, BNC = {MM}, CNB =
{MF, FM}, AUB={FF,MM}, AUC=S, BUC =C.

22  a ANB b. AUB  c. AUB d. (AnB)U(ANB)

2.3
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a. (AnB)U(ANB)=AN(BUB)=ANS=A.

b. BU(ANB)=(BNA)U(BNB)=(BNA)=A.

c. (AnB)N(ANB)=AN(BNB)=0. The result follows from part a.
d. BN(AnB)=AN(BNB)= 0. The result follows from part b.

A=1{(1,2),(22),3,2), (4.2), (5,2), (6,2), (1,4), (2,4), (3,4), (4,4), (5.4), (6,4), (1,6), (2,6),
(3,6), (4,6), (5,6), (6,6)}

C=1{22),(24),(2,6), (4,2), (4.4), (4,6), (6,2), (6,4), (6,6)}

ANB = {(2,2), (4,2), (6,2), (2,4), (4,4), (6,4), (2,6), (4,6), (6,6)}

ANB = {(1,2), (3,2), (5.2), (1,4), 3,4), (5.4), (1,6), (3,6), (5,6)}

A U B = everything but {(1,2), (1,4), (1,6), (3.2), (3,4), (3.6), (5.2), (5.4), (5,6)}
AnC=A

A = {two males} = {M;, M), (M|,M3), (M,M3)}

B = {at least one female} = {(M,W)), (M2,W)), M3,W)), (M|,W>), (M2,W>), (M3,W>),
{W1,W2)}

B = {no females} = A AUB=S ANnB=0 ANB=A

a.36+6=42 b. 33 c. 18
S= {A+, B+, AB+, O+, A-, B, AB-, O-}

a.S={A, B, AB, O}
b. P({A})=10.41, P({B})=0.10, P({AB}) = 0.04, P({O}) = 0.45.
c. P({A} or {B}) =P({A}) + P({B}) = 0.51, since the events are mutually exclusive.

a. Since P(S)=P(E)) +... + P(Es)=1, 1 =.15+.15 + .40 + 3P(Es). So, P(Es)=.10 and
P(E4) = .20.
b. Obviously, P(E;) + P(E4) + P(Es) = .6. Thus, they are all equal to .2

a. Let L = {left tern}, R = {right turn}, C = {continues straight}.
b. P(vehicle turns) = P(L) + P(R) = 1/3 + 1/3 = 2/3.

a. Denote the events as very likely (VL), somewhat likely (SL), unlikely (U), other (O).
b. Not equally likely: P(VL) = .24, P(SL) = .24, P(U) = .40, P(O) = .12.
c. P(at least SL) = P(SL) + P(VL) = .48.

a. P(needs glasses) = .44 + .14 = .48
b. P(needs glasses but doesn’t use them) = .14
C. P(uses glasses) = .44 + .02 = .46

a. Since the events are M.E., P(S) =P(E;) + ... + P(E4) = 1. So, P(E;)=1-.01-.09 —
.81 =.09.
b. P(at least one hit) = P(E;) + P(Ey) + P(E3) = .19.
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2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

a. 1/3 b.1/3+1/15=6/15 c. 1/3+1/16 =19/48 d. 49/240

Let B = bushing defect, SH = shaft defect.

P(B)=.06 +.02 = .08

b. P(BorSH)=.06+.08 +.02=.16

c. P(exactly one defect) =.06 + .08 = .14

d. P(neither defect)=1—-P(BorSH)=1-.16=.84

e

.S={HH, TH, HT, TT}

. if the coin is fair, all events have probability .25.

.A= {HT, TH}, B= {HT, TH, HH}
.P(A)=.5,P(B)=.75,P(AnB)=P(A)=.5,P(AUB)=P(B)=.75,P(AUB) = 1.

o Qo

o o

a. (Vi, Vi), (Vi1, V), (V1, V3), (V2, V1), (V2, V2), (V2, Vi), (V3, V1), (V3, V2), (V3, V3)
b. if equally likely, all have probability of 1/9.
C. A = {same vendor gets both} = {(V1, V1), (V2, V2), (V3, V3)}
B = {at least one V2} = {(V1, V2), (V2, V1), (V2, V1), (V2, V1), (V3, V2)}
So, P(A)=1/3,P(B)=5/9, P(AUB)=7/9,P(ANnB)=1/9.
a. P(G)=P(D,)=P(D,) =1/3.
b. 1. The probability of selecting the good prize is 1/3.

ii. She will get the other dud.

iii. She will get the good prize.

iv. Her probability of winning is now 2/3.
v. The best strategy is to switch.

P(A)=P((AnB)U(ANB))=P(ANB) + P(ANB) since these are M.E. by Ex. 2.5.
P(A)=P(BU(ANB))=P(B)+P(ANB) since these are M.E. by Ex. 2.5.

All elements in B are in A, so that when B occurs, A must also occur. However, it is
possible for A to occur and B not to occur.

From the relation in Ex. 2.22, P(AnB) >0, so P(B) < P(A).
Unless exactly 1/2 of all cars in the lot are Volkswagens, the claim is not true.

a. Let Ny, N, denote the empty cans and W, W, denote the cans filled with water. Thus,
S={NiNz, NyW5, NoWs, NiWy, NoWy, Wi Wo}
b. If this a merely a guess, the events are equally likely. So, P(W;W,) = 1/6.

a.5={CC, CR, CL,RC,RR,RL, LC, LR, LL}
b. 5/9
c.5/9
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a. Denote the four candidates as A, Ay, A3, and M. Since order is not important, the
outcomes are {A1Az, AjAs, AIM, ArAsz, AoM, AsM}.

b. assuming equally likely outcomes, all have probability 1/6.

C. P(minority hired) = P(A|M) + P(A;M) + P(AsM) = .5

a. The experiment consists of randomly selecting two jurors from a group of two women
and four men.
b. Denoting the women as wl, w2 and the men as m1, m2, m3, m4, the sample space is

wl,ml w2,ml ml,m2 m2,m3 m3,m4
wl,m2 w2,m2 ml,m3 m2,m4

wl,m3 w2,m3 ml,m4

wl,m4 w2,m4 wl,w2

c. P(wl,w2)=1/15

a. Let wl denote the first wine, w2 the second, and w3 the third. Each sample point is an
ordered triple indicating the ranking.

b. triples: (w1,w2,w3), (wl,w3,w2), (W2,wl,w3), (W2,w3,wl), (W3,wl,w2), (W3,w2,wl)
c. For each wine, there are 4 ordered triples where it is not last. So, the probability is 2/3.

a. There are four “good” systems and two “defactive” systems. If two out of the six
systems are chosen randomly, there are 15 possible unique pairs. Denoting the systems
as gl, g2, g3, g4, d1, d2, the sample space is given by S = {glg2, glg3, glg4, gldl,
gld2, g2g3, g2g4, g2d1, g2d2, g3g4, g3dl1, g3d2, gd4gl, g4dl, d1d2}. Thus:

P(at least one defective) = 9/15 P(both defective) = P(d1d2) = 1/15
b. If four are defective, P(at least one defective) = 14/15. P(both defective) = 6/15.

a. Let “1” represent a customer seeking style 1, and “2” represent a customer seeking
style 2. The sample space consists of the following 16 four-tuples:

1111, 1112, 1121, 1211, 2111, 1122, 1212, 2112, 1221, 2121,

2211,2221, 2212, 2122, 1222, 2222
b. If the styles are equally in demand, the ordering should be equally likely. So, the
probability is 1/16.
c. P(A)=P(1111) + P(2222) = 2/16.

a. Define the events: G = family income is greater than $43,318, N otherwise. The
points are El: GGGG E2: GGGN E3: GGNG E4: GNGG

E5:NGGG E6: GGNN E7:GNGN  E8: NGGN

E9: GNNG E10: NGNG EI11:NNGG EI12: GNNN

E13: NGNN E14:NNGN EI5:NNNG E16: NNNN
b.A={El,E2,...,El1}  B={E6,E7,...,El1} C = {E2, E3, E4, E5}
c. If P(E) = P(N) = .5, each element in the sample space has probability 1/16. Thus,

P(A)=11/16, P(B) = 6/16, and P(C) = 4/16.
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2.34  a. Three patients enter the hospital and randomly choose stations 1, 2, or 3 for service.
Then, the sample space S contains the following 27 three-tuples:
111,112,113, 121, 122, 123, 131, 132, 133, 211, 212, 213, 221, 222, 223,
231, 232,233,311, 312,313, 321, 322, 323, 331, 332, 333
b. A= {123, 132, 213, 231, 312, 321}
c. If the stations are selected at random, each sample point is equally likely. P(A) = 6/27.

2.35 The total number of flights is 6(7) = 42.

2.36  There are 3! = 6 orderings.

2.37 a. There are 6! = 720 possible itineraries.
b. In the 720 orderings, exactly 360 have Denver before San Francisco and 360 have San
Francisco before Denver. So, the probability is .5.

2.38 By the mn rule, 4(3)(4)(5) = 240.

2.39 a. By the mn rule, there are 6(6) = 36 possible roles.
b. Define the event A = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}. Then, P(A) = 6/36.

240 a. By the mn rule, the dealer must stock 5(4)(2) = 40 autos.
b. To have each of these in every one of the eight colors, he must stock 8*%40 = 320

autos.

2.41 If the first digit cannot be zero, there are 9 possible values. For the remaining six, there
are 10 possible values. Thus, the total number is 9(10)(10)(10)(10)(10)(10) = 9*10°.

2.42  There are three different positions to fill using ten engineers. Then, there are P,’=10!/3!
= 720 different ways to fill the positions.

o -

8\ 5
2.44  a. The number of ways the taxi needing repair can be sent to airport C is (SJ(SJ = 56.
So, the probability is 56/504 = 1/9.
6)4
b. 3(2J(4j =45, so the probability that every airport receives one of the taxis requiring

repair is 45/504.

17
2.45 = 408,408.
2710
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8
There are ( j ways to chose two teams for the first game, [ZJ for second, etc. So,

!
there are ( ]( j{ ]( j{ ) g = 113,400 ways to assign the ten teams to five games.
2

2n 2n-2
There are ( 5 ] ways to chose two teams for the first game, ( 5 J for second, etc. So,

. 2n! .
following Ex. 2.46, there are — ways to assign 2n teams to N games.
2

8 8
Same answer: = = 56.
5 3
130
a. = 8385.
2

b. There are 26*26 = 676 two-letter codes and 26(26)(26) = 17,576 three-letter codes.
Thus, 18,252 total major codes.

c. 8385 + 130 = 8515 required.

d. Yes.

Two numbers, 4 and 6, are possible for each of the three digits. So, there are 2(2)(2) =8
potential winning three-digit numbers.

50
There are [ 3 } = 19,600 ways to choose the 3 winners. Each of these is equally likely.

a. There are [3 =4 ways for the organizers to win all of the prizes. The probability is

4/19600.

4\ 4
b. There are [2 ( { } = 276 ways the organizers can win two prizes and one of the other
46 people to win the third prize. So, the probability is 276/19600.
4\ 46
C. (J{ 5 ] =4140. The probability is 4140/19600.

46
d. [ 3 J = 15,180. The probability is 15180/19600.

The mn rule is used. The total number of experiments is 3(3)(2) = 18.
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2.53

2.54

2.55

2.56

2.57

2.58

2.59

2.60

a. In choosing three of the five firms, order is important. So P;’= 60 sample points.

b. If F; is awarded a contract, there are P,' = 12 ways the other contracts can be assigned.
Since there are 3 possible contracts, there are 3(12) = 36 total number of ways to award

F3 a contract. So, the probability is 36/60 = 0.6.
8 . 3Y5
There are 4 =70 ways to chose four students from eight. There are NE =30 ways

to chose exactly 2 (of the 3) undergraduates and 2 (of the 5) graduates. If each sample
point is equally likely, the probability is 30/70 = 0.7.

I AR

The student can solve all of the problems if the teacher selects 5 of the 6 problems that

6 10
the student can do. The probability is (SJ / ( s j =0.0238.

52
There are ( 5 ) = 1326 ways to draw two cards from the deck. The probability is

4*12/1326 = 0.0362.

52
There are [ s } = 2,598,960 ways to draw five cards from the deck.

4\ 4
a. There are [3}(2} = 24 ways to draw three Aces and two Kings. So, the probability is

24/2598960.
b. There are 13(12) = 156 types of “full house” hands. From part a. above there are 24

different ways each type of full house hand can be made. So, the probability is
156*24/2598960 = 0.00144.

52
There are ( s j = 2,598,960 ways to draw five cards from the deck.

AN N o
a1 || =4 = 1024 So, the probability is 1024/2598960 = 0.000394.

b. There are 9 different types of “straight” hands. So, the probability is 9(4°)/2598960 =
0.00355. Note that this also includes “straight flush” and “royal straight flush” hands.

o 305B64B363)-(B65-n+D) g 5e 365664 -(43) <0

365" 365%
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n 253
o, SOACOHGOH-(364) 364" o 1_(%) — 0.5005.

2.61 .
365" 365"

!
2.62 The number of ways to divide the 9 motors into 3 groups of size 3 is (3' 2' 3'J =1680. If

both motors from a particular supplier are assigned to the first line, there are only 7

!
motors to be assigned: one to line 1 and three to lines 2 and 3. This can be done (1' ; 3|j

= 140 ways. Thus, 140/1680 = 0.0833.

2.63 There are [5] = 56 sample points in the experiment, and only one of which results in

choosing five women. So, the probability is 1/56.

6
2.64 6!(%) =5/324.

6 4
2.65 SI(EJ (lj =5/162.
6 6

2.66 a. After assigning an ethnic group member to each type of job, there are 16 laborers
remaining for the other jobs. Let ny be the number of ways that one ethnic group can be
assigned to each type of job. Then:

4 16
n, = . The probability is ny/N = 0.1238.
111115344

b. It doesn’t matter how the ethnic group members are assigned to jobs type 1, 2, and 3.
Let ng be the number of ways that no ethnic member gets assigned to a type 4 job. Then:

4\16 .. [4)(16 20
n, = . The probability is =0.2817.
ONS 05 5

2.67  As shown in Example 2.13, N =10’
a. Let A be the event that all orders go to different vendors. Then, A contains Ny =
10(9)(8)...(4) = 604,800 sample points. Thus, P(A) = 604,800/10" = 0.0605.

7
b. The 2 orders assigned to Distributor I can be chosen from the 7 in [J =21 ways.

5
The 3 orders assigned to Distributor II can be chosen from the remaining 5 in (3] =

10 ways. The final 2 orders can be assigned to the remaining 8 distributors in 8
ways. Thus, there are 21(10)(8%) = 13,440 possibilities so the probability is
13440/107 = 0.001344.
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2.68

2.69

2.70

2.71

2.72

2.73

2.74

c. Let A be the event that Distributors I, II, and III get exactly 2, 3, and 1 order(s)
respectively. Then, there is one remaining unassigned order. Thus, A contains

7Y5Y2
@(3)(1}7 = 2940 sample points and P(A) = 2940/10" = 0.00029.

n n! . .
a. = ———— = 1. There is only one way to choose all of the items.
n n'(n—n)!

n
b. - 1. There is only one way to chose none of the items.
0 0!(n—-0)!

n | | n
C. = n = n = . There are the same number of
r rn-r)!  (m-ni(n-(n-r))! n—r

ways to choose I out of n objects as there are to choose n — r out of n objects.

d. 2" =(1+1)" :Zn:[?}”ili :Z[nj

i1 i1 I

Mo " n! N n! 3 n!(n—k+1)+ n'k _ (n+D)!

k) (k=1) ki(n=k)! (k=D!n=k+D! kl(n—k+1)! ki(n—-k+1)! k!(n+1-k)!
From Theorem 2.3, lety; =y, = ... =y = 1.
a. P(AB)=.1/.3=1/3. b. P(BJA)=.1/.5=1/5.
c. P(AJAUB)=.5/(.5+.3-.1)=5/7 d. P(AJANB) = 1, since A has occurred.

e. P(ANB|AUB ) =.1(.5+.3-.1) = 1/7.

Note that P(A) = 0.6 and P(A|M) = .24/.4 = 0.6. So, A and M are independent. Similarly,
P(A|F)=.24/6=04=P(A),so A and F are independent.

a. P(at least one R) = P(Red) 3/4.  b. P(at least one r) = 3/4.
C. P(one r | Red) =.5/.75 = 2/3.

a. P(A)=0.61, P(D) =.30. P(AND) =.20. Dependent.
b. P(B) =0.30, P(D) = .30. P(BND) = 0.09. Independent.
c. P(C)=0.09, P(D)=.30. P(CND) =0.01. Dependent.
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a. Given the first two cards drawn are spades, there are 11 spades left in the deck. Thus,
11
50
3

b. Given the first three cards drawn are spades, there are 10 spades left in the deck. Thus,

the probability is =0.0084. Note: this is also equal to P(S3S4S5|S:S>).

e 2 -
the probability is 25 =0.0383. Note: this is also equal to P(S4Ss/S;S:S5).
Y
c. Given the first four cards drawn are spades, there are 9 spades left in the deck. Thus,

0

the probability is 418 =0.1875. Note: this is also equal to P(Ss|S;S2S3S4)
(¥

Define the events: U: job is unsatisfactory A: plumber A does the job

a. P(UJA) = P(ANU)/P(A) = P(AJU)P(U)/P(A) = .5*%.1/.4 = 0.125
b. From part a. above, 1 — P(UJA) = 0.875.

a. 0.40 b.0.37 c.0.10 d. 0.40 +0.37-0.10=0.67
e.1-04=0.6 f.1-0.67=0.33 g.1-0.10=0.90
h..1/.37=0.27 I.1/.4=0.25

1. Assume P(A|B) = P(A). Then:

P(ANB) =P(AB)P(B) =P(A)P(B). P(B|A)=P(BNA)/P(A)=P(A)P(B)/P(A)=P(B).
2. Assume P(B|A) = P(B). Then:

P(ANB) =P(B|A)P(A) =P(B)P(A). P(AB)=P(ANB)/P(B) =P(A)P(B)/P(B) =P(A).
3. Assume P(ANB) = P(B)P(A). The results follow from above.

If A and B are M.E., P(ANB) = 0. But, P(A)P(B) > 0. So they are not independent.

If Ac B, P(ANB)=P(A) # P(A)P(B), unless B =S (in which case P(B) = 1).

Given P(A) < P(A|B) = P(ANB)/P(B) = P(B|A)P(A)/P(B), solve for P(B|A) in the
inequality.

P(B|A) = P(BNA)/P(A) = P(A)/P(A) = 1
P(A|B) = P(ANB)/P(B) = P(A)/P(B).
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2.83

2.84

2.85

2.86

2.87

2.88

2.89

2.90

291

2.92

P(A)

———— since A and B are M.E. events.
P(A)+P(B)

P(A|AUB)=P(A)/P(AUB)=

Note that if P(A, N A;) =0, then P(A N A, " A,) also equals 0. The result follows from
Theorem 2.6.

P(BIAPA) _[1-PBIAPMA) _[1-PB)PA) _

P(A|B) =P(AnB)/P(B)= P(E) P(B) P(B)

m =P(A). So, AandB are independent.
P(B)
P(A|B)P(B) _[I-P(A|B)P(B)
P(A) P(A)
[1-P(AJP(B) _ P(A)P(B)
P(A) P(A)

P(B|A) =P(BNA)/P(A)= . From the above,

A and B are independent. So P(B |A) = =P(B). So,

A and B are independent

a. No. It follows from P(AU B) = P(A) + P(B) — P(ANB) < 1.

b. P(ANB) > 0.5
c. No.
d. P(ANB) < 0.70.

a. P(A) + P(B)— 1.
b. the smaller of P(A) and P(B).

a. Yes.

b. 0, since they could be disjoint.

c. No, since P(ANB) cannot be larger than either of P(A) or P(B).
d. 0.3=P(A).

a. 0, since they could be disjoint.
b. the smaller of P(A) and P(B).

a. (1/50)(1/50) = 0.0004.
b. P(at least one injury) = 1 — P(no injuries in 50 jumps) = 1 = (49/50)°° = 0.636. Your
friend is not correct.

If Aand B are M.E., P(AUB) =P(A) + P(B). This value is greater than 1 if P(A) = 0.4
and P(B) = 0.7. So they cannot be M.E. It is possible if P(A) = 0.4 and P(B) = 0.3.

a. The three tests are independent. So, the probability in question is (.05)° = 0.000125.
b. P(at least one mistake) = 1 — P(no mistakes) = 1 — (.95)° = 0.143.
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2.93 Let H denote a hit and let M denote a miss. Then, she wins the game in three trials with
the events HHH, HHM, and MHH. If she begins with her right hand, the probability she
wins the game, assuming independence, is (.7)(.4)(.7) + (.7)(.4)(.3) + (.3)(.4)(.7) = 0.364.

2.94  Define the events A: device A detects smoke B: device B detects smoke
a.P(AuB) =.95+.90 - .88=0.97.

b. P(smoke is undetected) =1 - P(AUB) =1-0.97 =0.03.

2.95 Part a is found using the Addition Rule. Parts b and ¢ use DeMorgan’s Laws.
a. 02+03-04=0.1
b. 1-0.1=0.9
c. 1-04=0.6
d P(K|B)=P(AmB)zp(B)_P(AmB)='3_'1
P(B) P(B) 3

=2/3.

2.96  Using the results of Ex. 2.95:
a. 0.5+0.2-(0.5)0.2)=0.6.
b. 1-0.6=04.
c. 1-0.1=0.9.

2.97 a.P(current flows) = 1 — P(all three relays are open) = 1 — (.1’ =0.999.
b. Let A be the event that current flows and B be the event that relay 1 closed properly.
Then, P(B|A) = P(BNA)/P(A) = P(B)/P(A) =.9/.999 = 0.9009. Note that Bc A.

2.98 Series system: P(both relays are closed) = (.9)(.9) = 0.81
Parallel system: P(at least one relay is closed) =.9 +.9 — .81 = 0.99.

2.99 Given that P(AUB) =a, P(B) = b, and that A and B are independent. Thus P(AUB) =
1 —aand P(BNA) =bP(A). Thus, P(AUB) =P(A)+b-bP(A)=1-a. Solve for P(A).

P(AuUB)nC) B P(ANC)u(BnC(C)) _
PC) P(C)

2.100 P(AUB|C)=

P(ANC)+P(BNC)-P(ANBANC)
P(C)

=P(A|C) + P(BIC) + P(ANBIC).

2.101 Let A be the event the item gets past the first inspector and B the event it gets past the
second inspector. Then, P(A) =0.1 and P(B|A) = 0.5. Then P(ANB) = .1(.5) = 0.05.

2.102 Define the events: I: disease I us contracted II: disease II is contracted. Then,
P(I)=0.1, P(Il) = 0.15, and P(INII) = 0.03.
a. PQull)=.1+.15-.03=0.22
b. PINIIUII) =.03/.22 = 3/22.
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2.103

2.104

2.105

2.106

2.107

2.108

2.109

2.110

2.111

2.112

Assume that the two state lotteries are independent.
a. P(666 in CT|666 in PA) = P(666 in CT) = 0.001
b. P(666 in CTN666 in PA) = P(666 in CT)P(666 in PA) =.001(1/8) = 0.000125.

By DeMorgan’s Law, P(AnB)=1-P(AnB)=1-P(AUB). Since P(AUB)<
P(A)+P(B), P(AnB)>1- P(A)-P(B).

P(landing safely on both jumps) >— 0.05 — 0.05 = 0.90.

Note that it must be also true that P(A) = P(B). Using the result in Ex. 2.104,

P(AnB)>1-2P(A) >0.98, so P(A) > 0.99.

(Answers vary) Consider flipping a coin twice. Define the events:
A: observe at least one tail  B: observe two heads or two tails C: observe two heads

Let U and V be two events. Then, by Ex. 2.104, P(U "V)>1—- P(U)-P(V). LetU=
ANB and V=C. Then, P(ANBNC)>1- P(AnB)-P(C). Apply Ex. 2.104 to
P(AN B) to obtain the result.

This is similar to Ex. 2.106. Apply Ex. 2.108: 0.95<1— P(A)-P(B)-P(C) <
P(ANBANC). Since the events have the same probability, 0.95 <1 —3P(A). Thus,
P(A) > 0.9833.

Define the events:
I: item is from line | Il: item is from line 11 N: item is not defective
Then, P(N) =P(N n (1 U Il)) =P(NNI) + P(NNII) =.92(.4) + .90(.6) = 0.908.

Define the following events:
A: buyer sees the magazine ad
B: buyer sees the TV ad
C: buyer purchases the product
The following are known: P(A) = .02, P(B) = .20, P(ANB) = .01. Thus P(AnB) = .21.

Also, P(buyer sees no ad)= P(ANB) =1 —P(AUB) =1-0.21 =0.79. Finally, it is
known that P(C|AUB) =0.1 and P(C|ANB) =1/3. So, we can find P(C) as
P(C)= P(CN(AUB))+P(CN(ANB)) =(1/3)(:21) + (.1)(.79) = 0.149.

a. P(aircraft undetected) = P(all three fail to detect) = (.02)(.02)(.02) = (.02)".
b. P(all three detect aircraft) = (.98)".

2.113 By independence, (.98)(.98)(.98)(.02) = (.98)*(.02).
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2.114 Let T = {detects truth} and L = {detects lie}. The sample space is TT, TL, LT, LL. Since
one suspect is guilty, assume the guilty suspect is questioned first:
a. P(LL) = .95(.10) = 0.095 b. P(LT)=..95(.9) = 0.885
b. P(TL) =.05(.10) = 0.005 d. 1 —(.05)(.90) = 0.955

2.115 By independence, (.75)(.75)(.75)(.75) = (.75)".
2.116 By the complement rule, P(system works) = 1 — P(system fails) = 1 — (.01)’.

2.117 a. From the description of the problem, there is a 50% chance a car will be rejected. To
find the probability that three out of four will be rejected (i.e. the drivers chose team 2),

4
note that there are (3] = 4 ways that three of the four cars are evaluated by team 2. Each

one has probability (.5)(.5)(.5)(.5) of occurring, so the probability is 4(.5)* = 0.25.
b. The probability that all four pass (i.e. all four are evaluated by team 1) is (.5)* = 1/16.

2.118 If the victim is to be saved, a proper donor must be found within eight minutes. The
patient will be saved if the proper donor is found on the 1%, 2nd 31 op 4th try. But, if the
donor is found on the 2™ try, that implies he/she wasn’t found on the 1% try. So, the
probability of saving the patient is found by, letting A = {correct donor is found}:

P(save) = P(A) + P(AA)+P(AAA)+P(AAAA).
By independence, this is .4 +.6(.4) + (.6)*(.4) + (.6)°(.4) = 0.8704

2.119 a. Define the events: A: obtain a sum of 3 B: do not obtain a sum of 3 or 7
Since there are 36 possible rolls, P(A) =2/36 and P(B) = 28/36. Obtaining a sum of 3
before a sum of 7 can happen on the 1% roll, the 2™ roll, the 3" roll, etc. Using the events
above, we can write these as A, BA, BBA, BBBA, etc. The probability of obtaining a sum
of 3 before a sum of 7 is given by P(A) + P(B)P(A) + [P(B)]*P(A) + [P(B)]’P(A) + ... .
(Here, we are using the fact that the rolls are independent.) This is an infinite sum, and it
follows as a geometric series. Thus, 2/36 + (28/36)(2/36) + (28/36)%(2/26) + ... = 1/4.

b. Similar to part a. Define C: obtain a sum of4  D: do not obtain a sum of 4 or 7
Then, P(C) =3/36 and P(D) = 27/36. The probability of obtaining a 4 before a 7 is 1/3.

2.120 Denote the events G: good refrigerator D: defective refrigerator
a. If the last defective refrigerator is found on the 4™ test, this means the first defective
refrigerator was found on the 1%, 2™ or 39 test. So, the possibilities are DGGD, GDGD,
and GGDD. So, the probability is (2)£)2)L. The probabilities associated with the other

two events are identical to the first. So, the desired probability is 3 (2)£)3)L =1 .

b. Here, the second defective refrigerator must be found on the 2nd, 3rd, or 4™ test.
Define: A;: second defective found on 2" test

As: second defective found on 3™ test

Ajs: second defective found on 4™ test
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2121

2.122

2.123

2.124

2.125

2.126

2.127

2.128

Clearly, P(A) = (2)1)=+. Also, P(As) = 1 from part a. Note that A, = {DGD, GDD}.
Thus, P(A2) =2(2)4)L)=2. So, P(A) + P(Ay) + P(As) = 2/5.

. Define: B;: second defective found on 3 test
B,: second defective found on 4™ test

Clearly, P(By) = 1/4 and P(B») = (3/4)(1/3) = 1/4. So, P(B) + P(B,) = 1/2.

a. 1/n
b. . L =1/n. nd.n2. L =1/n
c. P(gain access) = P(first try) + P(second try) + P(third try) = 3/7.

Applet exercise (answers vary).
Applet exercise (answers vary).

Define the events for the voter: D: democrat R: republican F: favors issue

P(D|F)= P(F | D)P(D) __7(6) /0
P(F |D)P(D)+P(F |[R)P(R) .7(.6)+.3(.4)

Define the events for the person: D: has the disease H: test indicates the disease
Thus, P(HD)=.9, P(H |D) =.9, P(D)=.01, and P(D) =.99. Thus,

P(H|D)P(D) _
P(H|D)P(D)+P(H|D)P(D) -

P(D|H)=

a. ((95*.01)/(.95*.01 +.1*.99) = 0.08756.

b..99*.01/(.99*.01 +.1*.99) = 1/11.

c. Only a small percentage of the population has the disease.

d. If the specificity is .99, the positive predictive value is .5.

e. The sensitivity and specificity should be as close to 1 as possible.

a..9%.4/(.9*4 + .1*.6) = 0.857.

b. A larger proportion of the population has the disease, so the numerator and
denominator values are closer.

c. No; if the sensitivity is 1, the largest value for the positive predictive value is .8696.

d. Yes, by increasing the specificity.

e. The specificity is more important with tests used for rare diseases.

a.Let P(A|B)=P(A|B)= p. By the Law of Total Probability,
P(A)=P(A|B)P(B)+P(A| B)P(B) = p(P(B)+P(B))=
Thus, A and B are independent.

b. P(A)=P(A|C)P(C)+P(A|C)P(C)>P(B|C)P(C)+P(B|C)P(C)=P(B).
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Define the events:  P: positive response M: male respondent F: female respondent

P(P|F)=.7, P(PIM) = 4, P(M) = .25. Using Bayes’ rule,

P(M |P)=—— P(P| M)P(I\_/I) _ .6(.25) _o04.
P(P|M)P(M)+P(P |F)P(F) .6(.25)+.3(.75)

Define the events:  C: contract lung cancer S: worked in a shipyard

Thus, P(S|C) = .22, P(S|C)=.14, and P(C) = .0004. Using Bayes’ rule,

P(C|S) P(S|C)P(C) .22(.0004) — 0.0006.

~ P(S|C)P(C)+P(S|C)P(C) .22(.0004)+.14(.9996)

The additive law of probability gives that P(AAB) = P(AnB)+P(ANB). Also, A and
B can be written as the union of two disjoint sets: A=(ANB)U(ANB) and
B=(AnB)U(ANB). Thus, P(AnB)=P(A)-P(ANB) and
P(ANB)=P(B)-P(AnB). Thus, P(AAB)=P(A)+P(B)-2P(ANB).

Fori=1, 2, 3, let Fj represent the event that the plane is found in region i and N; be the
complement. Also R;j is the event the plane is in region i. Then P(Fj|Ri) =1 — a; and
P(R;) = 1/3 for all i. Then,

o N P(N, |R)P(R)) __a!

a. PR |N,)= SRR
P(N1 |R1)P(R1)+P(N1 | Rz)P(R2)+P(N1 | Rz)P(Rz) o 3t3+3
a, +2°

1 1
b. Similarly, P(R, | N,) = and c. P(R,IN,)=——.
imilarly, P(R, [N,) @ +2 (RyIN)) o +2
Define the events:  G: student guesses C: student is correct
PGC)=e o CIOPC) I8y

" P(C|G)P(G)+P(C|G)P(G) 1(.8)+.25(2)

Define F as “failure to learn. Then, P(F|A) =.2, P(F|B) = .1, P(A)=.7, P(B) = .3. By
Bayes’ rule, P(A|F) = 14/17.

Let M = major airline, P = private airline, C = commercial airline, B = travel for business
a. P(B)=P(BIM)P(M) + P(B|P)P(P) + P(B|C)P(C) =.6(.5) +.3(.6) +.1(.9) = 0.57.

b. P(BNP)=P(B|P)P(P)=.3(.6)=0.18.

c. P(P|B)=P(BNP)/P(B)=.18/.57=0.3158.

d. P(BIC)=0.90.

Let A= woman’s name is selected from list 1, B =woman’s name is selected from list 2.
Thus, P(A)=5/7, P(B|A)=2/3, P(B | A) =7/9.

pAIB) - PEIAPA)  _ 3() 30
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2.137 Let A= {both balls are white}, and fori=1,2,... 5

A = both balls selected from bowl i are white. Then U A=A
Bi =bowl i is selected. Then, P(B;)=.2 forall i.

a P(A)= Y P(A[B)P(B) = +0+2(1)+31(3)+1(3)+1] = 255.

b. Using Bayes’ rule, P(B;|A) = 22 = 3/20.

Wi
o"\’ o“-”

2.138 Define the events:

2.139

2.140

2.141

A: the player wins
Bi: a sum of i on first toss
Cx: obtain a sum of k before obtaining a 7

12
Now, P(A)= z P(AnB;). We have that P(AnB,)=P(AnB;)=P(AnB,,) =0.
i=1
Also, P(AN B7) = P(B7) :%’ P(AN Bll) = P(Bn):%'
Now, P(AnB,)=P(C, nB,)=P(C,)P(B,)=1(2)=2 (using independence Ex. 119).
Similarly, P(Cs) = P(Co) = 15, P(Ce) = P(Cs) = 7, and P(C10) = 3.

Thus, P(ANB;)=P(ANB,)=3, P(ANB)=P(ANBy) =5, P(ANB,)) =+.
Putting all of this together, P(A) = 0.493.

From Ex. 1.112, P(Y = 0) = (.02)* and P(Y = 3) = (.98)°. The event Y = 1 are the events
FDF, DFF, and FFD, each having probability (.02)*(.98). So, P(Y = 1) = 3(.02)*(.98).
Similarly, P(Y = 2) = 3(.02)(.98)".

6
The total number of ways to select 3 from 6 refrigerators is (3} =20. The total number

2\ 4
of ways to select y defectives and 3 — y nondefectives is (y](3 y], y=0,1,2. So,

(2j[4]
o\3
P(Y=0)= === =4/20, P(Y = 1) = 4/20, and P(Y = 2) = 12/20.

The events Y =2, Y =3, and Y = 4 were found in Ex. 2.120 to have probabilities 1/15,
2/15, and 3/15 (respectively). The event Y =5 can occur in four ways:

DGGGD GDGGD GGDGD GGGDD
Each of these possibilities has probability 1/15, so that P(Y = 5) =4/15. By the
complement rule, P(Y = 6) = 5/15.
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2.145
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2.148
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Each position has probability 1/4, so every ordering of two positions (from two spins) has

4
probability 1/16. The values for Y are 2, 3. P(Y =2) = (J% =3/4. So, P(Y=3)=1/4.

PBNA), P(BNA)

Since P(B)=P(BNA)+P(BNA), 1= oE) B

=P(A|B)+P(A|B).

a. S = {16 possibilities of drawing 0 to 4 of the sample points}

SERCNE N e

c. AUB={E|,E;, E3, Es}, AnB={E;}, AnB=0,AUB={E,, E,}.
All 18 orderings are possible, so the total number of orderings is 18!
52 , 13
There are s ways to draw 5 cards from the deck. For each suit, there are s ways
. . . (13 52
to select 5 cards. Since there are 4 suits, the probability is 4 s s =0.00248.

The gambler will have a full house if he is dealt {two kings} or {an ace and a king}
(there are 47 cards remaining in the deck, two of which are aces and three are kings).

. 3 47 3\ 2 47 ,
The probabilities of these two events are [J / ( 5 J and (J{J / ( 5 ], respectively.
o . (3 47 (3)(2 47
So, the probability of a full house is 5 5 + 1 5 =0.0083.

12
Note that ( 4 ] =495. P(each supplier has at least one component tested) is given by

100611 . E——

495

Let A be the event that the person has symptom A and define B similarly. Then
a. P(AUB) = P(ANB) =04

b. P(AUB) =1- P(AUB) =0.6.

c. P(ANB|B)=P(AnB)/P(B) =.1/.4=10.25
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2150 P(Y=0)=04,P(Y=1)=02+0.3=0.5,P(Y=2)=0.1.

2.151 The probability that team A wins in 5 games is p*(1 — p) and the probability that team B
wins in 5 games is p(1 — p)*. Since there are 4 ways that each team can win in 5 games,
the probability is 4[p*(1 — p) + p(1 — p)*.

2.152 Let R denote the event that the specimen turns red and N denote the event that the
specimen contains nitrates.

a. P(R)=P(R|N)P(N)+P(R|N)P(N) =.95(.3) +.1(.7) = 0.355.
b. Using Bayes’ rule, P(N|R) = .95(.3)/.355 = 0.803.

2.153 Using Bayes’ rule,

Pl 1 H) P(H[1)P(1,)

= =0.313
P(H [T)P(,)+P(H[1,)P(1,)+PH [ 1)P(l5)

2.154 Let Y = the number of pairs chosen. Then, the possible values are 0, 1, and 2.
10 5
a. There are ( 4 j =210 ways to choose 4 socks from 10 and there are (4j 2* =80 ways

to pick 4 non-matching socks. So, P(Y =0) = 80/210.

n 2n
b. Generalizing the above, the probability is (2rj22 r/(Zr] .

2.155 a. P(A)=.25+.1+.05+.1=.5
b. P(ANB) = .1 +.05 = 0.15.

c.0.10
d. Using the result from Ex. 2.80, W =0.875.

2.156 a. 1. 1 =5686/97900 = 0.942  1i. (97900 —43354)/97900 = 0.557
ii. 10560/14113 = 0.748 iv. (646+375+568)/11533 = 0.138

b. If the US population in 2002 was known, this could be used to divide into the total
number of deaths in 2002 to give a probability.

2.157 Let D denote death due to lung cancer and S denote being a smoker. Thus:
P(D)=P(D|S)P(S)+P(D|S)P(S)=10P(D|S)(.2)+P(D|S)(.8) =0.006. Thus,
P(D|S)=0.021.
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Let W denote the even that the first ball is white and B denote the event that the second
ball 1s black. Then:

PW [B)=

P(B|W)PW) b)) w
P(B|W)PW)+P(B|W)PW) _b_(w )y bin (o) wihin

w+b+n \w-+b w+b+n \w+b

Note that S=S U0, and S and 0 are disjoint. So, 1 =P(S) =P(S) + P(0) and therefore
P(0)=0.

There are 10 nondefective and 2 defective tubes that have been drawn from the machine,

12
and number of distinct arrangements is [ 5 ] = 60.
a. The probability of observing the specific arrangement is 1/66.

b. There are two such arrangements that consist of “runs.” In addition to what was
given in part (a), the other is DDNNNNNNNNNNNN. Thus, the probability of two
runs is 2/66 = 1/33.

We must find P(R < 3) =P(R=3) + P(R = 2), since the minimum value for R is 2. Id the
two D’s occurs on consecutive trials (but not in positions 1 and 2 or 11 and 12), there are
9 such arrangements. The only other case is a defective in position 1 and 12, so that
(combining with Ex. 2.160 with R = 2), there are 12 possibilities. So, P(R < 3) = 12/66.

There are 9! ways for the attendant to park the cars. There are 3! ways to park the
expensive cars together and there are 7 ways the expensive cars can be next to each other
in the 9 spaces. So, the probability is 7(3!)/9! = 1/12.

Let A be the event that current flows in design A and let B be defined similarly. Design A
will function if (1 or 2) & (3 or 4) operate. Design B will function if (1 & 3) or (2 & 4)
operate. Denote the event R; = {relay i operates properly}, i =1, 2, 3, 4. So, using
independence and the addition rule,

P(A) = (R, UR,)N (R, UR,)=(9+.9-.9%)(.9 +.9—.9%) =0.9801.

P(B)= (R, nR,)U(R, "R,)=.9"+ .97 — (.9%)* = .9639.
So, design A has the higher probability.

Using the notation from Ex. 2.163, P(R, "R, | A)=P(R, "R, " A)/P(A).
Note thatR, "R, " A=R, " R,, since the event R; N R, represents a path for the current

to flow. The probability of this above event is .9> = .81, and the conditional probability is
in question is .81/.9801 = 0.8264.

Using the notation from Ex. 2.163, P(R, "R, |B)=P(R,nR, " B)/P(B).
RNR,N"B=(R N"R)N(R,N"R;))U(R,"R,)=(R, "R, "R;)U(R, "R,). The
probability of the above event is .9° + .97 - .9*=0.8829. So, the conditional probability
in question is .8829/.9639 = 0.916.
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8
2.166 There are (4) =70 ways to choose the tires. If the best tire the customer has is ranked

5
#3, the other three tires are from ranks 4, 5, 6, 7, 8. There are (3) = 10 ways to select

three tires from these five, so that the probability is 10/70 = 1/7.

7
2.167 IfY =1, the customer chose the best tire. There are (3} = 35 ways to choose the
remaining tires, so P(Y = 1) =35/70 = .5.
6
If Y = 2, the customer chose the second best tire. There are (J = 20 ways to choose the

remaining tires, so P(Y =2) =20/70 = 2/7. Using the same logic, P(Y = 4) =4/70 and so
P(Y =5)=1/70.

2.168 a. The two other tires picked by the customer must have ranks 4, 5, or 6. So, there are

3
[J = 3 ways to do this. So, the probability is 3/70.

b. There are four ways the range can be 4: #1 to #5, #2 to #6, #3 to #7, and #4 to #8.
Each has probability 3/70 (as found in part a). So, P(R=4)=12/70.

C. Similar to parts a and b, P(R = 3) =5/70, P(R =5) = 18/70, P(R = 6) = 20/70, and
P(R=7)=15/70.

2.169 a. For each beer drinker, there are 4! = 24 ways to rank the beers. So there are 24° =
13,824 total sample points.

b. In order to achieve a combined score of 4 our less, the given beer may receive at most
one score of two and the rest being one. Consider brand A. If a beer drinker assigns a
one to A there are still 3! = 6 ways to rank the other brands. So, there are 6° ways for
brand A to be assigned all ones. Similarly, brand A can be assigned two ones and one
two in 3(3!)’ ways. Thus, some beer may earn a total rank less than or equal to four in
416° + 3(31)°’] = 3456 ways. So, the probability is 3456/13824 = 0.25.

2.170 There are [3} = 35 ways to select three names from seven. If the first name on the list is

6
included, the other two names can be picked (J =15 ways. So, the probability is 15/35

=3/7.
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It is stated that the probability that Skylab will hit someone is (unconditionally) 1/150,
without regard to where that person lives. If one wants to know the probability condition
on living in a certain area, it is not possible to determine.

Only P(A|B+P(A|B)=1 is true for any events A and B.

Define the events:  D: item is defective C: item goes through inspection
Thus P(D) = .1, P(C|D) = .6, and P(C|D) = .2. Thus,
p(D[C) P(C|D)P(D)

- P(C|D)P(D)+P(C|D)P(D) =

Let A = athlete disqualified previously B = athlete disqualified next term
Then, we know P(B|A)=.15,P(B|A)=.5,P(A)=.3. To find P(B), use the law of total
probability: P(B) =.3(.5) +.7(.15) = 0.255.

Note that P(A) = P(B) = P(C) = .5. But, P(ANnBNC) =P(HH) = .25 # (.5)°. So, they
are not mutually independent.

a. PI(AuB)NC)]=P[(AnC)u(BNC)] = P(ANC)+P(BNC)-P(ANnBNC)
=P(A)P(C)+P(B)P(C)-P(AP(B)P(C) =[P(A)+ P(B)-P(A)P(B)IP(C)
=P(ANB)P(C).

b. Similar to part a above.

a. P(no injury in 50 jumps) = (49/50)° = 0.364.
b. P(at least one injury in 50 jumps) = 1 — P(no injury in 50 jumps) = 0.636.
¢. P(no injury in n jumps) = (49/50)" > 0.60, so N is at most 25.

Define the events: E: person is exposed to the flu F: person gets the flu

Consider two employees, one of who is inoculated and one not. The probability of

interest is the probability that at least one contracts the flu. Consider the complement:
P(at least one gets the flu) = 1 — P(neither employee gets the flu).

For the inoculated employee: P(F)=P(F N"E)+P(F nE) =.8(.6) + 1(.4) = 0.88.
For the non-inoculated employee: P(F)=P(F N"E)+P(F nE) = .1(.6) + 1(.4) = 0.46.
So, P(at least one gets the flu) = 1 — .88(.46) = 0.5952

a. The gamblers break even if each win three times and lose three times. Considering the

6
possible sequences of “wins” and “losses”, there are (3] = 20 possible orderings. Since

each has probability (1)°, the probability of breaking even is 20(1)° = 0.3125.
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2.180

2.181

b. In order for this event to occur, the gambler Jones must have $11 at trial 9 and must
win on trial 10. So, in the nine remaining trials, seven “wins” and two “losses” must be

9
placed. So, there are (ZJ = 36 ways to do this. However, this includes cases where

Jones would win before the 10™ trial. Now, Jones can only win the game on an even trial
(since he must gain $6). Included in the 36 possibilities, there are three ways Jones could
win on trial 6: WWWWWWWLL, WWWWWWLLW, WWWWWWLWL, and there are six
ways Jones could win on trial 8: LWWWWWWWL, WLWWWWWWL, WWLWWWWWL,
WWWLWWWWL, WWWWLWWWL, WWVWWWLWWL. So, these nine cases must be

removed from the 36. So, the probability is 27 (1) .

a. If the patrolman starts in the center of the 16x16 square grid, there are 4° possible paths
to take. Only four of these will result in reaching the boundary. Since all possible paths
are equally likely, the probability is 4/4° = 1/4’.

b. Assume the patrolman begins by walking north. There are nine possible paths that will
bring him back to the starting point: NNSS, NSNS, NSSN, NESW, NWSE, NWES, NEWS,
NSEW, NSWE. By symmetry, there are nine possible paths for each of north, south, east,
and west as the starting direction. Thus, there are 36 paths in total that result in returning
to the starting point. So, the probability is 36/4° = 9/4’.

We will represent the n balls as 0’s and create the N boxes by placing bars ( | ) between
the 0’s. For example if there are 6 balls and 4 boxes, the arrangement

0]00/|000
represents one ball in box 1, two balls in box 2, no balls in box 3, and three balls in box 4.
Note that six 0’s were need but only 3 bars. In general, n 0’s and N — 1 bars are needed to

N+n-1

N -1
ways to arrange the 0’s and bars. Now, if no two bars are placed next to each other, no
box will be empty. So, the N — 1 bars must be placed in the n — 1 spaces between the 0’s.

represent each possible placement of n balls in N boxes. Thus, there are (

n
The total number of ways to do this is (N J , so that the probability is as given in the

problem.
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3.1 P(Y = 0) = P(no impurities) = .2, P(Y = 1) = P(exactly one impurity) =.7, P(Y =2) = .1.

32 We know that P(HH) = P(TT) = P(HT) = P(TH) = 0.25. So, P(Y =-1)=.5,P(Y = 1) =
25=P(Y =2).

3.3 p(2)=P(DD)= 1/6, p(3) = P(DGD) + P(GDD) = 2(2/4)(2/3)(1/2) = 2/6, p(4) =
P(GGDD) + P(DGGD) + P(GDGD) = 3(2/4)(1/3)(2/2) = 1/2.

3.4 Define the events: A: value 1 fails B: valve 2 fails C: valve 3 fails
P(Y=2)=P(ANBNC) =.8=0512
P(Y =0)=P(AN(BUC))=P(AP(BUC)=.2(2+.2-.2%)=0.072.
Thus, P(Y=1)=1-.512-.072=0.416.

3.5 There are 3! = 6 possible ways to assign the words to the pictures. Of these, one is a
perfect match, three have one match, and two have zero matches. Thus,
p(0) =2/6, p(1) =3/6, p(3) = 1/6.

5
3.6  There are [J = 10 sample points, and all are equally likely: (1,2), (1,3), (1,4), (1,5),

2,3), (2,4), (2,5), (3,4), (3,5), (4,5).
a. p2)=.1,p3)=.2,p@) =.3,p65) = 4.

b. p3)=.1,p@)=.1,p(5) =2, p6) = .2, p(7) = .2, p(8) = .1, p(9) = .1.

3.7  There are 3° = 27 ways to place the three balls into the three bowls. Let Y = # of empty
bowls. Then:

p(0) = P(no bowls are empty) = £ =%
p(2) = P(2 bowls are empty) = =
p(1) =P(1 bowl is empty) =1 - & -2 =18,

3.8  Note that the number of cells cannot be odd.
p(0) = P(no cells in the next generation) = P(the first cell dies or the first cell
splits and both die) =.1 +.9(.1)(.1) = 0.109
p(4) = P(four cells in the next generation) = P(the first cell splits and both created
cells split) =.9(.9)(.9) = 0.729.
p2)=1-.109 -.729 = 0.162.

3.9 The random variable Y takes on vales 0, 1, 2, and 3.
a. Let E denote an error on a single entry and let N denote no error. There are 8§ sample
points: EEE, EEN, ENE, NEE, ENN, NEN, NNE, NNN. With P(E) =.05 and P(N) =.95
and assuming independence:
P(Y =3) =(.05)* = 0.000125 P(Y =2)=3(.05)2(.95) = 0.007125
P(Y = 1) = 3(.05)*(.95) = 0.135375 P(Y =0) = (.95)° = 0.857375.

31
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b. The graph is omitted.
c. P(Y>1)=P(Y=2)+P(Y=3)=0.00725.

3.10 Denote R as the event a rental occurs on a given day and N denotes no rental. Thus, the
sequence of interest is RR, RNR, RNNR, RNNNR, ... . Consider the position immediately
following the first R: it is filled by an R with probability .2 and by an N with probability
8. Thus, P(Y=0)=.2,P(Y=1)=.8(.2)=.16,P(Y =2)=.128, ... . In general,

P(Y=y)=.2(8),y=0,1,2,....

3.11 There is a 1/3 chance a person has O  blood and 2/3 they do not. Similarly, there is a
1/15 chance a person has O blood and 14/15 chance they do not. Assuming the donors
are randomly selected, if X =# of O" blood donors and Y = # of O blood donors, the
probability distributions are

0 1 2 3
p(x) | (2/3)° =8/27 | 3(2/3)*(1/3) = 12/27 | 3(2/3)(1/3)" =6/27 | (1/3)’ = 1/27
p(y) | 2744/3375 | 196/3375 14/3375 1/3375

Note that Z = X+ Y =# will type O blood. The probability a donor will have type O
blood is 1/3 + 1/15 = 6/15 = 2/5. The probability distribution for Z is

| 0 | 1 | 2 | 3

p(2) | (2/5) =27/125 | 3(2/5)°(3/5) = 54/27 | 3(2/5)(3/5)" =36/125 | (3/5)’ =27/125

3.12  E(Y)=1(4)+2(3)+3(2)+4(.1)=2.0
E(1/Y) = 1(.4) + 1/2(.3) + 1/3(.2) + 1/4(.1) = 0.6417
EY - 1) =ENY)-1=[1(4)+2%(3)+ 3 (2)+4*(]-1=5-1=4.
VIY)=EY)=[EY)*=5-22=1.

3.13  E(Y)=-1(1/2) + 1(1/4) + 2(1/4) = 1/4
E(Y) = (=D)X(1/2) + 1%(1/4) + 2X(1/4) = 7/4
V(Y) = 7/4 — (1/4)* = 27/16.
Let C = cost of play, then the net winningsis Y — C. IfE(Y-C)=0,C=1/4.

3.14 a. pu=E(Y)=3(.03) +4(.05)+5(.07) + ... + 13(.01)=7.9
b. o> = V(Y) = E(Y?) — [E(Y)]* = 3%(.03) + 4%(.05) + 5%(.07) + ... + 13%(.01) — 7.97 = 67.14
—62.41=4.73. So,6=2.17.
c. (W—20, p +26) = (3.56, 12.24). So, P(3.56 <Y <12.24)=P(4<Y<12)=.05+.07 +
10+ .14+ .20 + .18 +.12 + .07 + .03 = 0.96.

3.15 a.p(0)=P(Y=0)=(.48)’=.1106, p(1) = P(Y = 1) = 3(.48)*(.52) = 3594, p(2) = P(Y =
2) = 3(.48)(.52)> = 3894, p(3) = P(Y = 3) = (.52)° = .1406.
b. The graph is omitted.
c. P(Y =1)= 3594
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d. p=E(Y)=0(.1106) + 1(.3594) + 2(.3894) + 3(.1406) = 1.56,

o” = V(Y) = E(Y) [E(Y)]* = 0%(.1106) + 1%(.3594) + 2%(.3894) + 3%(.1406) — 1.56* =
3.1824 — 2.4336 = .7488. So, 6 = 0.8653.

e. (W—20, p + 206) = (—.1706, 3.2906). So, P(—.1706 <Y <3.2906)=P(0<Y <3)=1.

As shown in Ex. 2.121, P(Y=y)=1/nfory=1,2, ...,n. Thus, E(Y)= ﬁZy =l

y=1

n
E(Y?)=1) y? =@00mh - go v/ (Y) = Q000D (a1 )? — (X0D)
y=1

w=E(Y)=0(6/27) + 1(18/27) + 2(3/27) = 24/27 = .889
o” = V(Y) = E(Y)) —[E(Y)]* = 0%(6/27) + 1%(18/27) + 2*(3/27) — (24/27)* = 30/27 —
576/729 = .321. So, 6 =0.567

For (11— 20, L+ 20) = (-.245, 2.023). So, P(-.245 <Y <2.023)=P(0<Y<2)=1.

w=E(Y) = 0(.109) + 2(.162) + 4(.729) = 3.24.

Let P be a random variable that represents the company’s profit. Then, P = C — 15 with
probability 98/100 and P = C — 15 — 1000 with probability 2/100. Then,
E(P)=(C-15)(98/100) + (C— 15-1000)(2/100) = 50. Thus, C = $85.

With probability .3 the volume is 8(10)(30) = 2400. With probability .7 the volume is
8*10%40 = 3200. Then, the mean is .3(2400) + .7(3200) = 2960.

Note that E(N) = E(8aR?) = 87E(R?). So, E(R?) = 21%(.05) + 22%(.20) + ... + 26°(.05) =
549.1. Therefore E(N) = 8m(549.1) = 13,800.388.

Note that p(y) =P(Y =y)=1/6 fory=1, 2, ..., 6. This is similar to Ex. 3.16 with n = 6.
So, E(Y)=3.5and V(Y) =2.9167.

Define G to be the gain to a person in drawing one card. The possible values for G are
$15, $5, or $—4 with probabilities 3/13, 2/13, and 9/13 respectively. So,
E(G)=15(3/13) + 5(2/13) — 4(9/13) = 4/13 (roughly $.31).

The probability distribution for Y = number of bottles with serious flaws is:

py) [ 0 [ 1 ]2
y |.81].18].01

Thus, E(Y) = 0(.81) + 1(.18) +2(.01) = 0.20 and V(Y) = 0*(.81) + 1%(.18) + 2%(.01) —
(.20)* =0.18.

Let X; = # of contracts assigned to firm 1; X, = # of contracts assigned to firm 2. The
sample space for the experiment is {(LI), (LII), (LIII), (ILI), (IL,IT), (IL,IIT), (IILI), (IILIT),
(IILII)}, each with probability 1/9. So, the probability distributions for X; and X, are:
x. 0] 1]2 2 0] 1]2
p(xi) | 4/9[4/9[1/9  p(x) | 4/9]4/9 ] 1/9
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3.26

3.27

3.28

3.29

3.30

3.31

3.32

Thus, E(X;) = E(X;) = 2/3. The expected profit for the owner of both firms is given by
90000(2/3 + 2/3) = $120,000.

The random variable Y = daily sales can have values $0, $50,000 and $100,000.

IfY = 0, either the salesperson contacted only one customer and failed to make a sale or
the salesperson contacted two customers and failed to make both sales. Thus P(Y =0) =
1/3(9/10) + 2/3(9/10)(9/10) = 252/300.

If Y =2, the salesperson contacted to customers and made both sales. So, P(Y =2) =
2/3(1/10)(1/10) = 2/300.

Therefore, P(Y = 1) =1 —252/300 — 2/300 = 46/300.

Then, E(Y) = 0(252/300) + 50000(46/300) + 100000(2/300) = 25000/3 (or $8333.33).
V(Y)=380,561,111 and ¢ = $19,507.98.

Let Y = the payout on an individual policy. Then, P(Y = 85,000) =.001, P(Y =42,500) =
.01, and P(Y = 0) = .989. Let C represent the premium the insurance company charges.
Then, the company’s net gain/loss is given by C—Y. IfE(C-Y) =0, E(Y)=C. Thus,
E(Y) =85000(.001) +42500(.01) + 0(.989) =510 =C.

Using the probability distribution found in Ex. 3.3, E(Y) = 2(1/6) + 3(2/6) + 4(3/6) =
20/6. The cost for testing and repairing is given by 2Y + 4. So, E(2Y +4) =2(20/6) + 4 =
64/6.

j 0

ip(l'):_iz p(D=3i-p(i)= ]y p(y) =EY).

1 j=k j=1 k=1 j=1 y

NgE

Z‘O:P(Y:k):

o0
k=1 j=k

SP(Y 2 k)=
k=1

=~
Il

a. The mean of X will be larger than the mean of Y.
b.EX)=E(Y+1)=EY)+1=p+1.

C. The variances of X and Y will be the same (the addition of 1 doesn’t affect variability).
d. V(X) = E[(X = EQ))YT = E[(Y + 1 -~ 1] = E[(Y - p)’] = .

a. The mean of W will be larger than the mean of Y if p> 0. If p <0, the mean of W will
be smaller than p. If p= 0, the mean of W will equal p.

b. E(W) = E(2Y) = 2E(Y) = 2.

c. The variance of W will be larger than o, since the spread of values of W has increased.
d. V(X) = E[(X — E(X))] = E[(2Y — 207 = 4E[(Y — w’] = 40>

a. The mean of W will be smaller than the mean of Y if u> 0. If p <0, the mean of W
will be larger than p. If p = 0, the mean of W will equal p.

b. E(W) = E(Y/10) = (.1)E(Y) = (.1)p.

c. The variance of W will be smaller than o7, since the spread of values of W has

decreased.
d. V(X) = E[(X — E(X))*] = E[(.1Y — .1p)*] = (ODE[(Y — p)*] = (.01 )c™.
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3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40
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a. E(aY +b)=E(aY)+E(b)=aE(Y)+b=au+b.
b.V(aY +b)=E[(aY +b —au—b)*]=E[(aY —au)’]=a’E[(Y —u)’]=a’c".

The mean cost is E(10Y) = 10E(Y) = 10[0(.1) + 1(.5) + 2(.4)] = $13. Since V(Y) .41,
V(10Y) = 100V(Y) = 100(.41) = 41.

With B=SSUFS, P(B) = P(SS) + P(FS) = 2% (1999 ) 300 (200 ) — () 4

P(B|first trial success) = 1% = 0.3999, which is not very different from the above.

a. The random variable Y does not have a binomial distribution. The days are not
independent.
b. This is not a binomial experiment. The number of trials is not fixed.

a. Not a binomial random variable.

b. Not a binomial random variable.

. Binomial with n = 100, p = proportion of high school students who scored above 1026.
d. Not a binomial random variable (not discrete).

e. Not binomial, since the sample was not selected among all female HS grads.

Note that Y is binomial with n =4, p=1/3 = P(judge chooses formula B).

4 .
a. p(y){yJ(%)y(%) L y=0,1,2,3,4.

P(Y > 3) = p(3) + p(4) = 8/81 + 1/81 = 9/81 = 1/9.
E(Y) = 4(1/3) = 4/3.
V(Y) = 4(1/3)(2/3) = 8/9

Qoo

Let Y =# of components failing in less than 1000 hours. Then, Y is binomial with n =4
and p=.2.

a. P(Y=2)= @].22(.8)2 =0.1536.

b. The system will operate if 0, 1, or 2 components fail in less than 1000 hours. So,
P(system operates) = .4096 + .4096 + .1536 = .9728.

Let Y = # that recover from stomach disease. Then, Y is binomial with n =20 and p = .8.
To find these probabilities, Table 1 in Appendix III will be used.

a PY>10)=1-P(Y<9)=1-.001=.999.

b. P(14<Y<18)=P(Y<18)—P(Y<13)-.931-.087 =.844

c. P(Y<16)=.589.

Let Y =# of correct answers. Then, Y is binomial with n =15 and p=.2. Using Table 1
in Appendix III, P(Y>10)=1-P(Y <9) =1 - 1.000 = 0.000 (to three decimal places).
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3.42

3.43

3.44

3.45

3.46

3.47

3.48

3.49

a. If one answer can be eliminated on every problem, then, Y is binomial with n =15 and
p=.25. Then, P(Y>10)=1-P(Y<9)=1-1.000 = 0.000 (to three decimal places).

b. If two answers can be (correctly) eliminated on every problem, then, Y is binomial
withn=15and p=1/3. Then, P(Y >10)=1-P(Y <9) = 0.0085.

Let Y =# of qualifying subscribers. Then, Y is binomial withn =5 and p =.7.
a. P(Y=5)=.7"=.1681
b. P(Y>4)=P(Y=4)+P(Y=5)=5(.7")3)+.7 = .3601 + .1681 = 0.5282.

Let Y =# of successful operations. Then Y is binomial with n = 5.
a. Withp=.8, P(Y=5)=.8"=0.328.

b. With p=.6, P(Y =4)=5(.6"(.4) = 0.259.

c. Withp=.3,P(Y<2)=P(Y=1)+P(Y=0)=0.528.

Note that Y is binomial with n =3 and p = .8. The alarm will function if Y = 1, 2, or 3.
Thus, P(Y>1)=1-P(Y=0)=1-.008 =0.992.

When p = .5, the distribution is symmetric. When p <.5, the distribution is skewed to the
left. When p > .5, the distribution is skewed to the right.

] .II|‘|||‘|II.
T T T
5 10 15

0.15
|

0.10
|

p(y)

0.05
|

0.00

T
0

T
20

y

The graph is above.

a. Let Y = # of sets that detect the missile. Then, Y has a binomial distribution with n =5

and p=.9. Then, P(Y =4)=5(.9)*(.1) = 0.32805 and
P(Y>1)=1-P(Y=0)=1-5(.9)"(1)=0.32805.

b. With n radar sets, the probability of at least one dictionis 1 — (.1)". If 1 —(.1)" =.999,

n=3.

Let Y = # of housewives preferring brand A. Thus, Y is binomial with n=15 and p = .5.
a. Using the Appendix, P(Y>10)=1-P(Y<9)=1-.849=0.151.
b. P(10 or more prefer A or B)=P(6 <Y <9)=0.302.
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3.50 The only way team A can win in exactly 5 games is to win 3 in the first 4 games and then
win the 5™ game. Let Y =# of games team A wins in the first 4 games. Thus, Y has a
binomial distribution with n = 4. Thus, the desired probability is given by

P(Team A wins in 5 games) = P(Y = 3)P(Team A wins game 5)
4 3 4
= (Jp (I-p)p=4p"1-p).

3.51 a. P(at least one 6 in four rolls) = 1 — P(no 6’s in four rolls) = 1 — (5/6)* = 0.51775.

b. Note that in a single toss of two dice, P(double 6) = 1/36. Then:
P(at least one double 6 in twenty—four rolls) = 1 — P(no double 6’s in twenty—four rolls) =
=1-(35/36)**=0.4914.

3.52 LetY =# that are tasters. Then, Y is binomial with n =20 and p =.7.
a. PY>17)=1-P(Y<16)=0.107.
b. P(Y<15)=P(Y<14)=0.584.

3.53  There is a 25% chance the offspring of the parents will develop the disease. Then, Y =#
of offspring that develop the disease is binomial with n =3 and p =.25.
P(Y =3)=(.25)° = 0.015625.
. P(Y =1)=3(.25)(.75)* = 0.421875
Since the pregnancies are mutually independent, the probability is simply 25%.

oo

3.54 a.andb. follow from simple substitution
c. the classifications of “success” and “failure” are arbitrary.

L y(y— Dy - 2)n! L, & (=D (n-2)(n-3)! .
3.55 EY (Y -1)Y -2)} = Y(1- Y = (1 - y
MDY= =2 oyt PP L Sy P

3nf3 n-3 z n-3-z 3
=n(n-1)(n-2)p Z( , jp (1-p)"** =n(n-1)(n-2)p* .

Equating this to E(Y?) — 3E(Y?) + 2E(Y), it is found that
E(Y) = 3n(n-1)p> —n(n—=1)(n-2)p* +np.

3.56  Using expression for the mean and variance of Y = # of successful explorations, a
binomial random variable withn=10and p=.1, E(Y)=10(.1) =1, and
V(Y)=10(.1)(.9) = 0.9.

3.57 If Y =# of successful explorations, then 10 — Y is the number of unsuccessful
explorations. Hence, the cost C is given by C = 20,000 + 30,000Y + 15,000(10 —Y).
Therefore, E(C) = 20,000 + 30,000(1) + 15,000(10 — 1) = $185,000.

3.58 IfY is binomial with n =4 and p=_.1, E(Y) = .4 and V(Y) = .36. Thus, E(Y?)=.36 + (4)
=0.52. Therefore, E(C) =3(.52) + (.36) + 2 =3.96.
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3.59

3.60

3.61

3.62

3.63

3.64

3.65

3.66

If Y = # of defective motors, then Y is binomial with n =10 and p =.08. Then, E(Y) = .8.
The seller’s expected next gain is $1000 — $200E(Y) = $840.

Let Y = # of fish that survive. Then, Y is binomial with n =20 and p = .8.
P(Y =14)=.109.

P(Y > 10) =.999.

P(Y <16)=.589.

nw=20(.8) =16, 6> = 20(.8)(.2) = 3.2.

oo

Let Y =# with Rh" blood. Then, Y is binomial withn=5 and p = .8

a 1-PY=5)=.672.

b. P(Y<4)=.672.

c. Weneed n for which P(Y>5)= 1—-P(Y <4)>.9. The smallest nis 8.

a. Assume independence of the three inspection events.
b. Let Y =# of plane with wing cracks that are detected. Then, Y is binomial with n =3
and p = .9(.8)(.5) =.36. Then, P(Y>1)=1-P(Y =0)=0.737856.

a. Found by pulling in the formula for p(y) and p(y — 1) and simplifying.

b. Note that P(Y < 3) =P(Y <2) =P(Y =2) + P(Y = 1) + P(Y = 0). Now, P(Y =0) =
(.96)°° = .0254. Then, P(Y = 1) = @109 (0254) = 0952 and P(Y =2) =

1(.96)

G2+ (10952) =.1765. Thus, P(Y <3)=.0254 +.0952 +.1765 = 0.2971

2(.96)

o (n=y+D)
yq

others are similar.

> 1 is equivalent to (n+1)p—yp > yq is equivalent to (N+1)p >Yy. The

d. Since fory <(n+ 1)p, then p(y) > p(y — 1) >p(y—2)>.... Also, fory>(n+ 1)p, then
ply)=>p(y+1)>p(y+2)>.... Itis clear that p(y) is maximized when y is a close to
(n+ 1)p as possible.

To maximize the probability distribution as a function of p, consider taking the natural
log (since In() is a strictly increasing function, it will not change the maximum). By
taking the first derivative of In[p(Yyo)] and setting it equal to 0, the maximum is found to
be yo/n.

a. E(Y/n)=E(Y)/n=np/n=p.
b. V(Y/n) = V(Y)/n* = npg/n* = pg/n. This quantity goes to zero as N goes to infinity.

a. > q' 'p= pz Y= L =1 (infinite sum of a geometric series)
y=1 X= q
a"'p
b. =(. The eventY =1 has the highest probability for all p, 0 <p <.

qQ’’p
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3.67 (.7)%(.3)=0.07203.

3.68 1/(.30)=3.33.
3.69 Y is geometric withp=1—.41=.59. Thus, p(y)=(41)""(59),y=1,2, ....

3.70 LetY =# of holes drilled until a productive well is found.
a. P(Y=3)=(.8)%2)=.128
b. P(Y > 10) = P(first 10 are not productive) = (.8)'’ = .107.

371 a P(Y>a)= > q"'p=0¢"2a"'p=0".

y=a+l x=1
P(Y >a+b,Y >a) P(Y>a+b) g™

b. From parta, P(Y >a+b|Y >a)= q’.
P(Y >a) P(Y >a) q°

C. The results in the past are not relevant to a future outcome (independent trials).

3.72 LetY =# of tosses until the first head. P(Y>12|Y>10)=P(Y>11]Y>10)=1/2.

3.73 LetY =# of accounts audited until the first with substantial errors is found.
a. P(Y=3)=.1%(.9)=.009.
b. P(Y>3)=P(Y>2)=.1>=.0l.

374 p=19=1l1,0= /5 =35
3.75 LetY =# of one second intervals until the first arrival, so that p=.1

a. P(Y=3)=(9)2(.1)=.081.
b. P(Y>3)=P(Y>2)=.9"= 8l.

3.76  P(Y >y,)=(7)">.1. Thus,y, < XD =646, s0 Yy, <=6.

In(.7)

377 P(Y=1,3,5.)=PY=1)+P(Y+3)+P(Y=5)+..=p+gp+q'p+..=

1
pll+a*+q*+...]1=p
1-q

. . . . . k
5. (Sum an infinite geometric series in (qz) )

3.78 a. (4)'.6)=.01536.
b. (.4)* =.0256.

3.79 LetY =# of people questioned before a “yes” answer is given. Then, Y has a geometric
distribution with p = P(yes) = P(smoker and “yes”) + P(nonsmoker and “yes”) = .3(.2) +
0=.06. Thus, p(y)=.06(.94)".y=1,2, ....
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3.80

3.81

3.82

3.83

3.84

3.85

3.86

3.87

3.88

3.89

3.90

3.91

Let Y =# of tosses until the first 6 appears, so Y has a geometric distribution. Using the
result from Ex. 3.77,

P(B tosses first 6) =P(Y =2,4,6,..)=1-P(Y=1,3,5,..)=1-p

1

1-q°°

Since p = 1/6, P(B tosses first 6) = 5/11. Then,

P(Y =4) (5/6)°(1/6)
5/11  5/11

=275/1296.

P(Y =4 | B tosses the first 6)

With p=1/2, then pu=1/(1/2) = 2.
With p = .2, then p = 1/(.2) = 5. The 5" attempt is the expected first successful well.

Let Y = # of trials until the correct password is picked. Then, Y has a geometric
distribution with p = 1/n. P(Y = 6) = L(2L),

E(Y)=n, V(Y)= (1-1)n> =n(n—1).

Note that %qy =y(y-1)q’. Thus, [fq—iz;qy =Z;‘y(y—1)qy*2. Thus,
y= y=

=z — - — 2 =z 2 1
E[Y(Y-D]= > y(y-1a"" = pad y(y-1a’™* = pa4->.a" = pq(??{ﬂ—l—Q} =
y=2

y=1 y=1

(12_p3)3 = % Use this with V(Y) = E[Y(Y-1)] +E(Y) - [E(Y)]".

P(Y =yo) = q”'p. Like Ex. 3.64, maximize this probability by first taking the natural
log.

E(LY) =3 41— p)* p=fy 3 R = p
y=1 y=1
PY =y)=PY =y+D)=q"""'p=q’p,y=0,1,2, ....
E(Y)=E()-1 =5-L VIY") = V(Y = 1) = V(Y).
Let Y = # of employees tested until three positives are found. Then, Y is negative

9
binomial withr=3 andp=.4. P(Y=10)= (2}43(.6)7 =.06.

The total cost is given by 20Y. So, E(20Y) =20E(Y) =203 = $50. Similarly, V(20Y) =
400V(Y) =4500.
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3.92 LetY =# of trials until this first non—defective engine is found. Then, Y is geometric
withp=.9. P(Y=2)=.9(.1)=.09.

3.93 From Ex. 3.92:
4
a. P(y=5= [2J(.9)3(.1)2 =.04374.
b. P(Y<5)=P(Y=3)+P(Y=4)+P(Y=5)=.729 + .2187 + .04374 = .99144.

3.94 a.pu=1/(9)=1.11,6" = (1)/(.9)2 =.1234.
b. u=23/(.9)=3.33, 6 = 3(.1)/(.9)2 = .3704.

3.95 From Ex. 3.92 (and the memory—less property of the geometric distribution),
PY>4|Y>2)=P(Y>3|Y>2)=P(Y>1)=1-P(Y=0)=.1.

3.96 a.LetY =# of attempts until you complete your call. Thus, Y is geometric with p = .4.
Thus, P(Y =1)= 4, P(Y =2) = (.6).4 = .24, P(Y =3) = (.6)>.4 = .144.
b. Let Y = # of attempts until both calls are completed. Thus, Y is negative binomial with
r=2and p=.4. Thus, P(Y =4) = 3(.4)%(.6)* = .1728.

3.97 a. Geometric probability calculation: (.8)2(.2) =.128.
6
b. Negative binomial probability calculation: (2J(.2)3(.8)4 =.049.

C. The trials are independent and the probability of success is the same from trial to trial.
d. p=3/.2=15, 6% = 3(.8)/(.04) = 60.

398 a P _ I :y_lq
POY-D  oa Py

y—r
c.Ifr=7,p=.5=q, then

b. If y_—lq >1,thenyg—q>y—ror equivalently% >y. The 2" result is similar.

r=4_7=5_13.y.

I-q 1-.5

3.99 Define a random variable X =y trials before the before the first success,y=r—1,r,r+1,
.... Then, X=Y — 1, where Y has the negative binomial distribution with parameters r

and p. Thus, p(X) = 7 Q7 y=r—1,rr+1,....

. y+r-1 _ y+r-1
3100 a. P(Y =y)=P(Y =y+nr)= e p'q” = _ p'q’,y=0,1,2,....

b. E(Y)=E(Y)=r=rlp-r=r/q, V(Y) = V(Y =) = V(Y).
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3.101

3.102

3.103

3.104

3.105

3.106

3.107

3.108

3.109

10
a. Note that P(Y =11) = (4 ] p’(1-p)°. Like Ex. 3.64 and 3.86, maximize this

probability by first taking the natural log. The maximum is 5/11.
b. In general, the maximum is r/yj.

5 10
Let Y =# of green marbles chosen in three draws. Then. P(Y = 3) = (3}/{ 3 j =1/12.

Use the hypergeometric probability distribution with N=10,r=4,n=5. P(Y=0)= 3

Define the events:  A: 1% four selected packets contain cocaine
B: 2" two selected packets do not contain cocaine

Then, the desired probability is P(ANB) = P(BJA)P(A). So,

P(A) = (145}/(240] =.2817 and P(B|A) = @]/(ljj =.0833. Thus,

P(ANB) =.2817(.0833) = 0.0235.

a. The random variable Y follows a hypergeometric distribution. The probability of being
chosen on a trial is dependent on the outcome of previous trials.

5
@= 5357 +.1786=0.7143.
U y

C. = 3(5/8) = 1.875, 6> = 3(5/8)(3/8)(5/7) = .5022, so ¢ = .7087.

Using the results from Ex.103, E(50Y) = 50E(Y) = 50[5 (%)] = $100. Furthermore,
V(50Y) = 2500V(Y) = 2500[5 (& )2)] = 1666.67.

The random variable Y follows a hypergeometric distribution with N=6,n =2, and r = 4.
Use the fact that P(at least one is defective) = 1 — P(none are defective). Then, we
require P(none are defective) <.2. If n=3§,

P(none are defective) = (A )16 )12 )1 )2 )12 (L )12) = 0.193.
Let Y = # of treated seeds selected.

2Lo)
a. P(Y=4)= =.0238

2]

b. P(Y<3)=1-P(Y=4)=

L) _
2]

C. same answer as part (b) above.
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4\(2

L)

Y

b.P(Y>1)=p(1)+pQ2)=

3110 a. P(Y=1)=
L0

c. P(Y<1)=p(0)+p(l)=.8.

LS
3]
y | o | 1 |2
p(y) | 14/30 | 14/30 | 2/30

L)
5]
y o[ 1 | 213
p(y) | 5/30 | 15/30 | 9/30 | 1/30

3.111 a. The probability function for Y is p(y) =

,Y=0, 1, 2. In tabular form, this is

b. The probability function for Y is p(y) =

,Yy=0,1,2,3. In tabular form, this is

3.112 Let Y =# of malfunctioning copiers selected. Then, Y is hypergeometric with probability

function
3 5
p(y) = %,y& 1,2, 3.
4

a. P(Y=0)=p(0)=1/14.
b. P(Y>1)=1-P(Y=0)=13/14.

3.113 The probability of an event as rare or rarer than one observed can be calculated according
to the hypergeometric distribution, Let Y = # of black members. Then, Y is

| HENEN " "
hypergeometric and P(Y < 1) = ~5-=+-75<> = .187. This is nearly 20%, so it is not
)
unlikely.
3.114 = 6(8)/20 = 2.4, 6° 6(8/20)(12/20)(14/19) = 1.061.

3.115 The probability distribution for Y is given by

y o1 ]2
p(y) | 1/5 ] 3/5 | 1/5

3.116 (Answers vary, but with n =100, the relative frequencies should be close to the
probabilities in the table above.)
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3.117

3.118

3.119

3.120

3.121

Let Y =# of improperly drilled gearboxes. Then, Y is hypergeometric with N=20,n =5,
and r = 2.
a. P(Y=0)=.553
b. The random variable T, the total time, is given by T = 10Y + (5 —Y) =9Y + 5. Thus,
E(T) =9E(Y) + 5=9[5(2/20)] + 5=9.5.
V(T) =81V(T) = 81(.355) = 28.755, 0 = 5.362.

P(Y =4)
P(Y =3)+P(Y =4)

L)
5)

— .00001847. Thus, P(Y =4 |Y >3)=.0105.

Let Y =# of aces in the hand. Then. P(Y=4|Y>3)= . Note that Y

is a hypergeometric random variable. So, P(Y =3)= =.001736 and

L7)
3]

Let the event A = 2™ king is dealt on 5™ card. The four possible outcomes for this event
are {KNNNK, NKNNK;, NNKNK, NNNKK}, where K denotes a king and N denotes a

non—king. Each of these outcomes has probability: (4 Y2 )4 )42 ). Then, the desired

probability is P(A) = 4 (£ £ )£ )4 )2 ) = .016.

P(Y =4)=

There are N animals in this population. After taking a sample of k animals, making and
releasing them, there are N — k unmarked animals. We then choose a second sample of

size 3 from the N animals. There are ( 3] ways of choosing this second sample and

N -k 'k
there are ( 5 j(l] ways of finding exactly one of the originally marked animals. For

k = 4, the probability of finding just one marked animal is

N-4\(4
P(Y=1)= | ijjm = RO
3

Calculating this for various values of N, we find that the probability is largest for N =11
or N = 12 (the same probability is found: .503).

a. P(Y=4)=2.e7=.090.
b.P(Y>4)=1-P(Y<3) =1-.857=.143 (using Table 3, Appendix III).
c. P(Y <4)=P(Y <3)=.857.

>
d.PY=4|Y22)= PO 2D 143504 = 241
P(Y >2)
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3.123

3.124

3.125

3.126

3.127

3.128

3.129

3.130

3.131

3.132
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Let Y =# of customers that arrive during the hour. Then, Y is Poisson with A = 7.
a. P(Y<3)=.0818.
b. P(Y>2)=.9927.
c. P(Y=5)=.1277

If p(0) = p(1), e* = Ae™*. Thus, L= 1. Therefore, p(2) = L e =.1839.

Using Table 3 in Appendix III, we find that if Y is Poisson with A = 6.6, P(Y <2) = .04.
Using this value of A, P(Y >5)=1-P(Y <5)=1-.355 = .645.

Let S = total service time = 10Y. From Ex. 3.122, Y is Poisson with A = 7. Therefore,
E(S) = 10E(Y) =7 and V(S) = 100V(Y) = 700. Also,
P(S>150)=P(Y>15)=1-P(Y<15)=1-.998 =.002, and unlikely event.

a. Let Y = # of customers that arrive in a given two—hour time. Then, Y has a Poisson
distribution with A =2(7) = 14 and P(Y =2) = 4 ¢,

b. The same answer as in part a. is found.

Let Y =# of typing errors per page. Then, Y is Poisson with A =4 and P(Y <4) = .6288.

Note that over a one—minute period, Y = # of cars that arrive at the toll booth is Poisson
with A = 80/60 = 4/3. Then, P(Y>1)=1-P(Y=0)=1-¢ ** = 7364.

Following the above exercise, suppose the phone call is of length t, where t is in minutes.
Then, Y = # of cars that arrive at the toll booth is Poisson with A = 4t/3. Then, we must
find the value of t such that

PY=0)=1-e"> 4.
Therefore, t <—21n(.6) =.383 minutes, or about .383(60) = 23 seconds.

Define: Y, = # of cars through entrance I, Y, = # of cars through entrance II. Thus, Y; is
Poisson with A = 3 and Y, is Poisson with A = 4.

Then, P(three cars arrive) =P(Y; =0, Y, =3)+P(Y,=1,Y,=2)+ P(Y,=2,Y>,=1) +
+P(Y1 = 3, Yz = 0)

By independence, P(three cars arrive) = P(Y; = 0)P(Y, =3) + P(Y, = 1)P(Y,=2)
+P(Y; =2)P(Y,=1)+ P(Y; =3)P(Y,=0).
Using Poisson probabilities, this is equal to 0.0521

Let the random variable Y = # of knots in the wood. Then, Y has a Poisson distribution
with A = 1.5 and P(Y < 1) =.5578.

Let the random variable Y = # of cars entering the tunnel in a two—minute period. Then,
Y has a Poisson distribution with A =1 and P(Y >3)=1-P(Y <3)=0.01899.
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3.133

3.134

3.135

3.136

3.137

3.138

3.139

3.140

3.141

3.142

Let X = # of two—minute intervals with more than three cars. Therefore, X is binomial
withn=10and p=.01899 and P(X>1)=1-P(X=0) =1 — (1-.01899)'" = .1745.

The probabilities are similar, even with a fairly small n.

y | p(Y), exact binomial | p(y), Poisson approximation
0 358 368
1 378 368
2 189 184
3 .059 .061
4 013 015

Using the Poisson approximation, A = np =100(.03) =3,s0P(Y>1)=1-P(Y=0) =
.9524.

Let Y =# of E. coli cases observed this year. Then, Y has an approximate Poisson

distribution with A = 2.4.

a P(Y=5)=1-P(Y<4)=1-.904=.096.

b. P(Y>5)=1-P(Y<5)=1-.964 =.036. Since there is a small probability
associated with this event, the rate probably has charged.

Using the Poisson approximation to the binomial with A = np =30(.2) = 6.
Then, P(Y <3)=.1512.

E[Y(Y -1)]= Z% =)\ % Using the substitution z =y — 2, it is found
y=0 y=0

that E[Y(Y — 1)i =A%, Use this with V(Y) = E[Y(Y-1)] + E(Y) — [E(Y)]* = .

Note that if Y is Poisson with A = 2, E(Y) = 2 and E(Y?) = V(Y) + [E(Y)]?=2+ 4 =6. So,
E(X) = 50 — 2E(Y) — E(Y?) = 50 — 2(2) — 6 = 40.

el —100e".

y!

!

Since Y is Poisson with A = 2, E(C) = E[loo(%)Y ]: i = =100e”!

y=0 y=1

Similar to Ex. 3.139: E(R) = E(1600 — 50Y?) = 1600 — 50(6) = $1300.

b. Note that if A >y, p(y) > p(y —1). If A>y, p(y) > p(y —1). If A =Yy for some integer Y,
p(y) =p(y — D).
c. Note that for A a non—integer, part b. implies that fory — 1 <y <A,

p(y — 1) <p(y) > p(y + 1).
Hence, p(y) is maximized for y = largest integer less than A. If A is an integer, then p(y) is
maximized at both values A — 1 and A.
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3.144

3.145

3.146

3.147

3.148

3.149

3.150

3.151

3.152

3.153
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Since A is a non—integer, p(y) is maximized aty = 5.

Observe that with A = 6, p(5) = €&~ =.1606, p(6) = &£~ =.1606.

n(n
Using the binomial theorem, m(t)=E(e") = Z[y]( pe' ) q"Y =(pe' +q)".

y=0

Imt)=n(pe' +q)"" pe'. Att=0, thisis np = E(Y).

Cmt)=n(n—1)(pe' +q)""(pe')> +n(pe' +q)" " pe'. Att=0, thisis np(n—1)+ np.

e

Thus, V(Y) = np*(n — 1) + np — (np)2 = np(1 — p).

t

The moment-generating function is m(t) = E(e")=>"pe¥q’" = pe' Y (qe')’ = lp—et.
y=1 y=0 - qe

pe'
a-

4m(t) = . Att=0, this is 1/p = E(Y).
dt () qet)z p ()

) (1-qge")? pe' —2pe'(1-qe')(—qe") B .
Lm(t) = o) . Att=0, this is (1+q)/p>.
Thus, V(Y) = (1+q)/p* — (1/p)* = a/p”.

This is the moment—generating function for the binomial with n =3 and p = .6.
This is the moment—generating function for the geometric with p = .3.

This is the moment—generating function for the binomial with n =10 and p =.7, so
P(Y <5)=.1503.

This is the moment—generating function for the Poisson with A =6. So, u=6 and 6 =
V6 =2.45. So,P(Y = <26)=P(u— 26 <Y<p+20)=P(1.1 <Y <10.9)=
P(2 <Y <10)=.940.

a. Binomial withn=5,p=.1
b. If m(t) is multiplied top and bottom by %, this is a geometric mgf with p = %5.
C. Poisson with A = 2.

a. Binomial mean and variance: p=1.667, o> = 1.111.
b. Geometric mean and variance: p =2, 6> =2.
c. Poisson mean and variance: p =2, 6> = 2.
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3.155

3.156

3.157

3.158

3.159

3.160

3.161

3.162

3.163

Differentiate to find the necessary moments:

a. E(Y)=7/3.

b. V(Y)=E(Y) - [E(Y)]*=6-(7/3)*=5/9.

c. Sincem(t)=E(e").Y can only take on values 1, 2, and 3 with probabilities 1/6, 2/6,
and 3/6.

a. m0)=EE")=E()=1.

b. m, (t)=E€")=E("”)=E€"™)=m(3t).

c. m, (1)=EE¥)=EE"“™)=E(e™e")=e""m(t).

a. From part b. in Ex. 3.156, the results follow from differentiating to find the necessary
moments.

b. From part c. in Ex. 3.156, the results follow from differentiating to find the necessary
moments.

The mgf for Wis m,, (t)=E(e™)=E("@*)=E(e"e™")=e"m(at).

From Ex. 3.158, the results follow from differentiating the mgf of W to find the necessary
moments.

a. E(Y)=EMn-Y)=n—-E®Y)=n-—-np=n(l—p)=ng. V(Y)=V(n-Y)=V()=npg.
_ Yy _ (n-Y)y _ nta(-t)Y \ _ AN _ n

b. m.(t)=E(e" )=E(e""")=E(e"e"™")=e"m(-t)=(pe' +q)".

c. Based on the moment—generating function, Y* has a binomial distribution.

d. The random variable Y* = # of failures.

e. The classification of “success” and “failure” in the Bernoulli trial is arbitrary.

m,. (t) = EEY )=EE"")=E(e'e")=e"'m(t)=

s (2) (1 (1
Note that r(t) =T r() ) = iwom o] ek Then, r'(0) =" =5 = 4.

r<2)(0) m® (0)m(0)~[m® <0>]2 _ E(H)- [E(Y)] — o2
(m(0))’ )

Note that r(t) = 5(e'— 1). Then, r(t)=5e'and r”(t)=5e'. So, r’(0)=5=pu=1
and r'¥(t)=5"'=0"=1.
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3.165

3.166

3.167

3.168

3.169

3.170
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nfn
For the binomial, P(t)=E(t")= ZKyj (pt)’ 9" =(q+ pt)". Differentiating with

y=0

respectto t, & P('[)‘t ,=np(q+ ptHH™ 1|t ,=np.

0 Ya—MtY —x 0 y -t
For the Poisson, P(t)=E(t")= Zx et (1.)’e e’V Differentiating

y=0 ' e y:O y!
with respect to t, E(Y) =& P(D)|,=2e""| =2 and & P(t)‘ =N =
E[Y(Y — 1)] = E(Y?) — E(Y). Thus, V(Y) =\

E[Y(Y - 1)(Y-2)] = & P(t)‘t = At ”L = A =E(Y?) = 3E(Y?) + 2E(Y). Therefore,
E(Y) =1 +302+ x) =1 +32+

a. The value 6 lies (11-6)/3 = 5/3 standard deviations below the mean. Similarly, the
value 16 lies (16—-11)/3 = 5/3 standard deviations above the mean. By Tchebysheff’s
theorem, at least 1 — 1/(5/3)* = 64% of the distribution lies in the interval 6 to 16.

b. By Tchebysheft’s theorem, .09 = 1/k%, so k= 10/3. Since 6 =3, ko = (10/3)3 =10=_C.

Note that Y has a binomial distribution withn =100 and p=1/5=.2

a. E(Y)=100(.2) = 20.

b. V(Y)=100(.2)(.8) =16, so ¢ = 4.

c. The intervals are 20 & 2(4) or (12, 28), 20 + 3(4) or (8, 32).

d. By Tchebysheff’s theorem, 1 — 1/3* or approximately 89% of the time the number of
correct answers will lie in the interval (8, 32). Since a passing score of 50 is far from
this range, receiving a passing score is very unlikely.

a. E(Y)=—1(1/18) + 0(16/18) + 1(1/18) = 0. E(Y*)=1(1/18) + 0(16/18) + 1(1/18) =2/18
=1/9. Thus, V(Y)=1/9 and 6 = 1/3.

b.P(Y-0|>1)=P(Y=-1)+P(Y=1)=1/18 + 1/18 =2/18 = 1/9. According to
Tchebysheff’s theorem, an upper bound for this probability is 1/3% = 1/9.

c. Example: let X have probability distribution p(—1) = 1/8, p(0) = 6/8, p(1) = 1/8. Then,
E(X) =0 and V(X) = 1/4.

d. For a specified k, assign probabilities to the points —1, 0, and 1 as p(—1) = p(1) =
and p(0)=1- .

2k2

Similar to Ex. 3.167: the interval (.48, 52) represents two standard deviations about the
mean. Thus, the lower bound for this interval is 1 — %4 = %. The expected number of
coins is 400(34) = 300.
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3.171 Using Tchebysheff’s theorem, 5/9 = 1 — 1/k?, so k =3/2. The interval is 100 £ (3/2)10, or
85to 115.

3.172 From Ex. 3.115, E(Y) =1 and V(Y) = .4. Thus, 6 =.63. The interval of interest is 1 &
2(.63), or (—.26, 2.26). Since Y can only take on values 0, 1, or 2, 100% of the values
will lie in the interval. According to Tchebysheff’s theorem, the lower bound for this
probability is 75%.

3.173 a. The binomial probabilities are p(0) = 1/8, p(1) = 3/8, p(2) = 3/8, p(3) = 1/8.

b. The graph represents a symmetric distribution.

c. E(Y) =3(1/2) = 1.5, V(Y) = 3(1/2)(1/2) = .75. Thus, 6 = .866.

d. For one standard deviation about the mean: 1.5 £.866 or (.634, 2.366)

This traps the values 1 and 2, which represents 7/8 or 87.5% of the probability. This is
consistent with the empirical rule.

For two standard deviations about the mean: 1.5 £2(.866) or (—.232, 3.232)
This traps the values 0, 1, and 2, which represents 100% of the probability. This is
consistent with both the empirical rule and Tchebysheft’s theorem.

3.174 a. (Similar to Ex. 3.173) the binomial probabilities are p(0) =.729, p(1) =.243, p(2) =
027, p(3) =.001.

b. The graph represents a skewed distribution.

c. E(Y)=3(.1) =3, V(Y) = 3(.1)(.9) = .27. Thus, 6 =.520.

d. For one standard deviation about the mean: .3 £.520 or (—.220, .820)

This traps the value 1, which represents 24.3% of the probability. This is not consistent
with the empirical rule.

For two standard deviations about the mean: .3 £2(.520) or (-.740, 1.34)

This traps the values 0 and 1, which represents 97.2% of the probability. This is
consistent with both the empirical rule and Tchebysheff’s theorem.

3.175 a. The expected value is 120(.32) = 38.4
b. The standard deviation is 4/120(.32)(.68) = 5.11.

c. It is quite likely, since 40 is close to the mean 38.4 (less than .32 standard deviations
away).

3.176 Let Y represent the number of students in the sample who favor banning clothes that
display gang symbols. If the teenagers are actually equally split, then E(Y) = 549(.5) =
274.5 and V(Y) = 549(.5)(.5) = 137.25. Now. Y/549 represents the proportion in the
sample who favor banning clothes that display gang symbols, so E(Y/549) =.5 and
V(Y/549) = .5(.5)/549 = .000455. Then, by Tchebysheff’s theorem,
P(Y/549 > .85) < P(|Y/549 — .5| > .35) < 1/k’,
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where k is given by ko =.35. From above, 6 =.02134 so k= 16.4 and 1/(16.4)* = .0037.
This is a very unlikely result. It is also unlikely using the empirical rule. We assumed
that the sample was selected randomly from the population.

3.177 For C=50+3Y, E(C)=50+ 3(10) = $80 and V(C) = 9(10) = 90, so that c = 9.487.
Using Tchebysheff’s theorem with k = 2, we have P(|Y — 80| < 2(9.487)) > .75, so that the
required interval is (80 — 2(9.487), 80 + 2(9.487)) or (61.03, 98.97).

3.178 Using the binomial, E(Y) = 1000(.1) = 100 and V(Y) = 1000(.1)(.9) = 90. Using the result
that at least 75% of the values will fall within two standard deviation of the mean, the

interval can be constructed as 100 + 2 \/% ,or (81, 119).

3.179 Using Tchebysheft’s theorem, observe that
P(Y2p+ko)=P(Y —pu>ko)<P(lY —plzko)<-t.
Therefore, to find P(Y > 350) < 1/k%, we solve 150 + k(67.081) = 350, so k =2.98. Thus,
P(Y >350) < 1/(2.98)* = .1126, which is not highly unlikely.

3.180 Number of combinations = 26(26)(10)(10)(10)(10) = 6,760,000. Thus,
E(winnings) = 100,000(1/6,760,000) + 50,000(2/6,760,000) + 1000(10/6,760,000) =
$.031, which is much less than the price of the stamp.

3.181 Note that P(acceptance) = P(observe no defectives) = [Sj p°q’. Thus:
p = Fraction defective | P(acceptance)
0 1
.10 .5905
.30 1681
.50 0312
1.0 0

3.182 OC curves can be constructed using points given in the tables below.
10
a. Similar to Ex. 3.181: P(acceptance) = [ 0 j p°q'’. Thus,
p o] .05 .10 ] 30| 50 |1
P(acceptance) | 1 |.599 | .349 | .028 | .001 | 0

_ 10 o 0 (10Y 4 o
b. Here, P(acceptance) 0 p'q + { pq . Thus,

p 0] .05 .10 | 30 | .50]1
P(acceptance) | 1 | .914 | .736 | .149 | .01 | 0
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— 10 0~10 10 1~9 10 28
c. Here, P(acceptance) 0 pq + 1 pq + 5 p-q°. Thus,

p

|
P(acceptance) \

3.183 Graph the two OC curves with n =5 and a =1 in the first case and n =25 and a =5 in the
second case.

a. By graphing the OC curves, it is seen that if the defectives fraction ranges from p =0
to p = .10, the seller would want the probability of accepting in this interval to be a
high as possible. So, he would choose the second plan.

b. If the buyer wishes to be protected against accepting lots with a defective fraction
greater than .3, he would want the probability of acceptance (when p > .3) to be as
small as possible. Thus, he would also choose the second plan.

0.6 0.8 1.0
| |

P(A)

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

P

The above graph illustrates the two OC curves. The solid lie represents the first case and the
dashed line represents the second case.

3.184 LetY =# in the sample who favor garbage collect by contract to a private company.
Then, Y is binomial with n = 25.
a Ifp=.80,P(Y>22)=1-P(Y<21)=1-.766=.234,
b. Ifp=.80,P(Y=22)=.1358.
c. There is not strong evidence to show that the commissioner is incorrect.

3.185 LetY =# of students who choose the numbers 4, 5, or 6. Then, Y is binomial with n =20
and p = 3/10.
a PY=28)=1-PY<7)=1-.7723 = .2277.
b. Given the result in part a, it is not an unlikely occurrence for 8 students to choose 4, 5
or 6.
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3.188

3.189

3.190

3.191

3.192

3.193

3.194
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The total cost incurred is W = 30Y. Then,

E(W) =30E(Y) =30(1/.3) = 100, V(W) = 900V(Y) = 900(.7/.3%) = 7000.
Using the empirical rule, we can construct a interval of three standard deviations about
the mean: 100 + 3+/7000 , or (151, 351).

Let Y =# of rolls until the player stops. Then, Y is geometric with p = 5/6.
a. P(Y=3)=(1/6)*(5/6) = .023.

b. E(Y)=6/5=1.2.

c. Let X = amount paid to player. Then, X =2"".

X

E(X)=EQ")=22""a""p=p2(2q) =
y=1 x=0
this is $1.25.
The result follows from P(Y >1|Y >1)=

P ince 2q< 1. With p = 5/6,
1-2q

P(Y>1) P(Y>2) 1-P(Y=1)—P(Y =0)
P(Y>1) P(Y=>1) 1-P(Y =0) '

The random variable Y = # of failures in 10,000 starts is binomial with n = 10,000 and
p=.00001. Thus, P(Y>1)=1-P(Y=0)=1-(.9999)" = 09516.
Poisson approximation: 1 —e~' = .09516.

Answers vary, but with n =100, ¥ should be quite close to p = 1.

Answers vary, but with n = 100, s* should be quite close to 6* = .4.

Note that p(1) = p(2) = ... p(6) = 1/6. From Ex. 3.22, p=3.5 and 6* =2.9167. The
interval constructed of two standard deviations about the mean is (.08, 6.92) which
contains 100% of the possible values for Y.

Let Y, =# of defectives from line I, Y is defined similarly. Then, both Y; and Y, are

binomial with n =5 and defective probability p. In addition, Y, + Y, is also binomial with
n =10 and defective probability p. Thus,

Sl G
P(Y1=2|Y1+Y2=4)=P(Y‘ZZ)PW‘:2)= 2 2 2\2 =(.476.

P(Y1+Y2:4) 10 5.5 10
4 P 4

Notice that the probability does not depend on p.

The possible outcomes of interest are:
WLLLLLLLLLL, LWLLLLLLLLL, LLWLLLLLLLL
So the desired probability is .1(.9)'° + .9(.1)(.9)° + (.9)*(.1)(.9)* = 3(.1)(.9)'" = .104.
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3.195 LetY =# of imperfections in one—square yard of weave. Then, Y is Poisson with A = 4.
a. PY>1)=1-P(Y=0)=1-¢"=.982.
b. Let W =# of imperfections in three—square yards of weave. Then, W is Poisson with
A=12. PW>1)=1-PW=0)=1-¢"

3.196 For an 8—square yard bolt, let X =# of imperfections so that X is Poisson with A = 32.
Thus, C = 10X is the cost to repair the weave and
E(C) = 10E(X) = $320 and V(C) = 100V(X) = 3200.

3.197 a. Let Y =# of samples with at least one bacteria colony. Then, Y is binomial with n =4
and p = P(at least one bacteria colony) = 1 — P(no bacteria colonies) = 1 — e * = .865 (by
the Poisson). Thus, P(Y>1)=1-P(Y=0)=1-(.135)*=.9997.

b. Following the above, we require 1 — (.135)" = .95 or (.135)" = .05. Solving for n, we

have n= llnn(f'gss)) =1.496, so take n = 2.

3.198 Let Y =# of neighbors for a seedling within an area of size A. Thus, Y is Poisson with A =
A*d, where for this problem d = 4 per square meter.
a. Note that “within 1 meter” denotes an area A =n(1 m)*>=n m>. Thus, P(Y =0)=¢e*".

b. “Within 2 meters” denotes an area A = (2 m)> = 41 m*. Thus,
3

P(Y<3)=P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)= > (62"
y=0

3.199 a. Using the binomial model with n = 1000 and p = 30/100,000, let A = np =
1000(30/100000) = .300 for the Poisson approximation.

b. Let Y =# of cases of IDD. P(Y>2)=1-P(Y=0)-P(Y=1)=1-.963 =.037.
3.200 Note that
(q+pe")" = [q + p(1+t+‘72,+‘;3!+---)]n = [1+ pt+pL+ p%+---)]n.
Expanding the above multinomial (but only showing the first three terms gives
(q+pe")" =1"+(np)t1"" +[n(n ~-1)p’ +np]%l“’2 oo
The coefficients agree with the first and second moments for the binomial distribution.
3.201 From Ex. 103 and 106, we have that =100 and ¢ = V1666.67 =40.825. Using an

interval of two standard deviations about the mean, we obtain 100 + 2(40.825) or
(18.35, 181.65)
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3.202 Let W =# of drivers who wish to park and W’ = # of cars, which is Poisson with mean A.
a. Observe that

) 0 7\’
— — _ r_ r_ k n—-k A—A

n

Ko k(A J A N
_ ke ( jz(n - <p> Z <p) g

= &e’“’, k=0,1,2, ....
k!
Thus, P(W = 0) = e **

b. This is a Poisson distribution with mean Ap.

3.203 Note that Y(t) has a negative binomial distribution with parameters r =k, p=e™
a. E[Y(D)] =ke', VIY()] = 222 = k(e —e™).

b. Withk=2,1="1, E[Y(5)] = 3.2974, V[Y(5)] = 2.139.

3.204 LetY =# of left-turning vehicles arriving while the light is red. Then, Y is binomial with
n=5and p=.2. Thus, P(Y <3)=.993.

3.205 One solution: let Y = # of tosses until 3 sixes occur. Therefore, Y is negative binomial
8
where r =3 and p = 1/6. Then, P(Y =9) = @(éf (2)° =.0434127. Note that this

probability contains all events where a six occurs on the 9™ toss. Multiplying the above
probability by 1/6 gives the probability of observing 4 sixes in 10 trials, where a six
occurs on the 9™ and 10™ trial: (.0424127)(1/6) = .007235.

3.206 Let Y represent the gain to the insurance company for a particular insured driver and let P
be the premium charged to the driver. Given the information, the probability distribution
for Y is given by:

y | pw

P .85
P—2400 | .15(.80)=.12
P—7200 |.15(.12)=.018
P—12,000 | .15(.08)=.012

If the expected gain is 0 (breakeven), then:
E(Y)=P(.85) + (P —2400).12 + (P —7200).018 + (P — 12000).012 = 0, so P = $561.60.

3.207 Use the Poisson distribution with A = 5.
a. p2)=.084,P(Y<2)=.125.
b. P(Y>10)=1-P(Y<10)=1-.986 =.014, which represents an unlikely event.
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3.208

3.209

3.210

3.211

3.212

3.213

If the general public was split 5050 in the issue, then Y = # of people in favor of the
proposition is binomial with n = 2000 and p =.5. Thus,

E(Y) = 2000(.5) = 1000 and V(Y) = 2000(.5)(.5) = 500.

Since 6 = /500 =22.36, observe that 1373 is (1373 — 1000)/22.36 = 16.68 standard
deviations above the mean. Such a value is unlikely.

Let Y = # of contracts necessary to obtain the third sale. Then, Y is negative binomial
with r=3,p=.3. So, P(Y <5)=P(Y =3) + P(Y = 4) = .3° + 3(.3)°(.7) = .0837.

In Example 3.22, A =p =3 and 6 = 3 and that ¢ = V3 =1.732. Thus,
P(Y -3£2(1.732)) = P(—.464 <Y <6.464) =P(Y <6) =.966. This is consistent with
the empirical rule (approximately 95%).

There are three scenarios:
e if she stocks two items, both will sell with probability 1. So, her profit is $.40.
e if she stocks three items, two will sell with probability .1 (a loss of .60) and three
will sell with probability .9. Thus, her expected profit is (—.60).1 + .60(.9) = $.48.
e if she stocks four items, two will sell with probability .1 (a loss of 1.60), three will
sell with probability .4 (a loss of .40), and four will sell with probability .5 (a gain
of .80. Thus, her expected profit is (—1.60).1 + (—.40).4 + (.80).5 = $.08

So, to maximize her expected profit, stock three items.

Note that %] )l e s ). e

first bracketed part, each quotient in parentheses has a limiting value of p. There are y
such quotients. In the second bracketed part, each quotient in parentheses has a limiting
value of 1 —p =q. There are n — Yy such quotients, Thus,

e e

40\ 60
a. The probability is p(10) = ([1]0(0]] =.1192 (found by dhyper (10, 40, 60, 20) in R).
20
b. The binomial approximation is (;22;).4'(.6)'"® =.117, a close value to the above
(exact) answer.
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3.214 Define: A = accident next year B = accident this year C = safe driver

Thus, P(C) =.7, P(A|C) =.1 = P(B|C), and P(A|C)=P(B|C)=.5. From Bayes’ rule,
B P(B|C)P(C) 1(.7)
P(C|B) = S =
P(B|C)P(C)+P(B|C)P(C) .1(.7)+.5(.3)

Now, we need P(A|B). Note that since C UC =S, this conditional probability is equal to

P(An(CuUC)|B)=P(ANC|B)+P(ANC |B)=P(ANC|B)+P(ANC |B), or
P(A|B)=P(C|B)P(A|CNB)+P(C|B)P(A|C nB) =7/22(.1) + 15/22(.5) = .3727.

So, the premium should be 400(.3727) = $149.09.

3.215 a. Note that for (2), there are two possible values for N,, the number of tests performed 1
andk+ 1. If N, =1, all of the K people are healthy and this probablhty is (. 95) Thus
P(N,=k+ 1)—1—(95) Thus, E(N,) = 1(.95)" + (k + 1)(1 = .95%) = 1 + k(1 — .95).
This expectation holds for each group, so that for n groups the expected number of tests
is n[1 + k(1 —.95)].

b. Writing the above as g(k) = & [1 + k(1 — 95)], where n = X, we can minimize this
with respect to k. Note that g'(k) = 5 + (.95%)In(.95), a strictly decreasing function.
Since k must be an integer, it is found that g(K) is minimized at k=5 and g(5) = .4262.

C. The expected number of tests is .4262N, compared to the N tests is (1) is used. The
savings is then N —.4262N = .5738N.

3.216 a. P(Y = n) = [;](l::nr] = xl oy (N-mU  r(r=1)(r=2)-(r-n+l)

(NJ = NT2 (=)l — N(N=I)(N=2)-(N—n+1) *

b. Since for integers a > b, ( . j =2 apply this result to find that
b+1

pyln) _ y+l  N-n+n+y+l and pPyIn) _ y+l  N-h+n+y+l
p(y+lln) — -y n-y p(y+lR) — K-y n-y '

_pQyIn) o PCy+lin)
With r; <1y, it follows that 70 > o0 -

N N Nl Nl Nl N Nl Nl Nl N
o {2) (e (A (]
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N, +N N, +N N, +N
(1+a)yM ™ =K : 2}{ : 2Jy+---( : z)yN”NZ} Since these are equal, the
0 1 N, +N,

coefficient of every y" must be equal. In the second equality, the coefficient is
N, +N,
)
In the first inequality, the coefficient is given by the sum

N, YN N N N, \N n (N N
L I IV SO FEUORTE IR z ! ? |, thus the relation holds.
0 An I \n-1 n\o =\ k An-k

d. The result follows from part ¢ above.

)
(%)

3217 E(YV)=> y[;](n:vr):r [ [

N (y=-D(r=y)!
y=0 n =1

r—1\(N-r
} = rZFyl(]gj‘yj] . In this sum, let x =y — I:
y=1 n

et b QT o) s el |
3218 E[Y(Y-D]=). [Nyj 2= sy (”ﬁ :r(r—l)ZW . In this
y=0 n y=0 n y=2 n
r(r=1yn(n-1)

N - From this result, the variance of

sum, let X =y — 2 to obtain the expectation

the hypergeometric distribution can also be calculated.
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0 y<l1
4 1<y<2
4.1 a. F(y)=P(Y <y)=<.7 2<y<3
9 3<y<4
1 y>4

1.0

F(y)

0.4

0.2

0.0

b. The graph is above.
42 a.p(l)=.2,pR2)=(1/4)4/5=.2,p3) = (1/3)(3/4)(4/5) = 2., p(4) = .2, p(5) = .2.

0 y<l1
2 1<y<2
b. F(y)=P(Y <y)={ & 25V
6 3<y<4
8 4<y<5
1 y=5

C.P(Y<3)=F(2)=4,P(Y<3)=.6,P(Y=3)=p(3) = .2

d. No, since Y is a discrete random variable.

59
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F(y)

4.3  a. The graph is above.
b. It is easily shown that all three properties hold.
4.4 A binomial variable with n = 1 has the Bernoulli distribution.

45 Fory=2,3,...Fy)—F@y-1)=PY<y)—PY <y-1)=P(Y=y)=p(y). Also,
F(1)=P(Y<1)=P(Y =1)=p(1).

46 a F(i)=P(Y<i)=1-P(Y>i)=1-P(1*i trials are failures) =1 —q".
b. It is easily shown that all three properties hold.
47 aP2=<Y<5)=PY<4)-P(Y<1)=.967-.376=0.591
P2<Y<5)=P(Y<4)-P(Y<2)=.967—-.678 = .289.
Y is a discrete variable, so they are not equal.
b.P2<Y<5)=P(Y<5)-P(Y<1)=.994 - .376=0.618
P2<Y<5)=PY<5-P(Y<2)=.994-.678=0.316.
Y is a discrete variable, so they are not equal.
c. Y is not a continuous random variable, so the earlier result do not hold.
4.8 a. The constant k = 6 is required so the density function integrates to 1.
b.P(4<Y<1)=.648.
C. Same as part b. above.

d.P(Y<.4|Y<.8)=P(Y<.4)/P(Y<.8)=.352/.896 = 0.393.

e. Same as part d. above.
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4.9

4.10

411
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a. Y is a discrete random variable because F(y) is not a continuous function. Also, the set
of possible values of Y represents a countable set.

b. These values are 2, 2.5, 4, 5.5, 6, and 7.

C. p(2)=1/8,p(2.5)=3/16—1/8=1/16, p(4) = 1/2 - 3/16 = 5/16, p(5.5) = 5/8 — 1/2 =
1/8, p(6) = 11/16 — 5/8 = 1/16, p(7) = 1 — 11/16 = 5/16.

d. P(Y<¢5)=F(¢5)=.50 ¢p5=4.

‘1)‘95
a F(§s)= [6y(1—y)dy =.95,50 ¢,5 =0.865.
0

b. Since Y is a continuous random variable, yo = ¢, = 0.865.

a. Jz'cydy = [cyz/z]i =2c=1,s0c=1/2.
0

Y y
b. F(y)= [ f(dt=[4dt=2,0<y=<2.

0

1.0

0.4

0.2
|

0.0
|

c. Solid line: f(y); dashed line: F(y) !
d.P(1<Y<2)=FQ)—F(l)=1-.25=75.

e. Note that P(1 <Y <2)=1-P(0<Y<1). Theregion (0 <y <1) forms a triangle (in
the density graph above) with a base of 1 and a height of .5. So, P(0<Y <1)= 3 (1)(.5)
=25and P(1<Y<2)=1-.25=.75.
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412 a F(-0)=0, F(c0) = 1, and F(y;) — F(y2) = € * —e™* >0 provided y; > y.
b. F(gy)=1-e* = 3,50 ¢, = \/-In(.7) =0.5972.

c. f(y)=F'(y)= 2ye_y2 for y >0 and 0 elsewhere.

d. P(Y >200) =1 — P(Y <200)=1 - P(Y<200)=1 - F(2)=¢e*.

e. P(Y>100 | Y <200) = P(100 <Y < 200)/P(Y < 200) = [F(2) - F(1)]/F(2) = ="

1-e*

y 1 y
413  a Forosysl,F(y)zjtdtzyZ/z. For 1 <y<1.5, F(y)=J.tdt+J‘dt=1/2+y—1
0 0 1

=y —1/2. Hence,
0 y<0

y>/2  0<y<l
F(y)=
y—-1/2 1<y<1.5
1 y>1.5
b.P(0<Y<.5)=F(5)=1/8.

C.P(55Y<12)=F(1.2)-F(5=12-1/2-1/8=.575.
414  a. A triangular distribution.
y 1 Y 2
b. For0<y<1,F(y)=[tdt=y*/2. For 1 <y<2,F(y)= [tdt+[(2-t)dt=2y -4 -1.
0 0 1

C.P(8<Y<12)=F(1.2)- F(.8)=.36.

d. P(Y>1.5|Y>1)=P(Y > L.5)/P(Y > 1) = .125/.5 = .25.

415 a.Forb=0,f(y)=0. Also, [ f(y)=[b/y*=-b/y]; =1.
— b
b. F(y) =1 -Db/y, fory > b, 0 elsewhere.
c.PY>b+c)=1-Fb+c)=Db/(b+c).

d. Applying partc., P(Y>b+d|Y>b+c)=(b+c)/(b+d).
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2
416 a. Jc(2—y)dy:c[2y—y2/2]é =2c=1,s0c=1/2.
0

b. F(y)=y—y*4, for 0 <y <2.

2.0

15

1.0
|

0.5
|

0.0
|

0.0 05 1.0 15 20

c. Solid line: f(y); dashed line: F(y) ’

d. P(1<Y<2)=FQ2)-FQ1)=1/4.

1
417 a [(ey*+y)dy=[ey’ /3+y* /2] =1,c=32.
0

b.F(y)=y’/2+Yy*/2 for0<y<1.

25
|

2.0

15

1.0

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

C. Solid line: f(y); dashed line: F(y) ’
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4.18

4.19

d. F(-1)=0, F(0)=0, F(1) = 1.
e. P(Y <.5)=F(.5) = 3/16.

f.P(Y>.5|Y>.25)=P(Y>.5)/P(Y > .25) = 104/123.

0 1
a. j.zdy+j(.2+cy)dy=.4+c/2=1,soc= 1.2.
-1 0

0 y<-1
2(1+Y) -1<y<0
b. F(y)= 2
2(1+y+3y") 0<y<l1
1 y>1
c. Solid line: f(y); dashed line: F(y) ’

d. F(-1)=0, F(0) = .2, F(1) = 1

e. P(Y>.5]Y>.1)=P(Y>.5)/P(Y>.1)=.55/.774 = .71.

a. Differentiating F(y) with respect to y, we have
0 y<0
125 O0<y<2
A25y 2<y<4
0 y>4
b. F(3) - F(1)=7/16

f(y)=

c.1-F(1.5)=13/16

d. 7/16/(9/16) = 7/9.




www.elsolucionario.net

Chapter 4: Continuous Variables and Their Probability Distributions 65

4.20
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4.22

4.23

4.24

4.25

4.26
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From Ex. 4.16:
‘ 2 3 r 3 4
E(Y) =I-5y(2— y)dy =y7+%]§ =2/3, E(Yz)zj.Syz(z— y)dy :%H?]i =2/3.
0 0
So, V(Y) =2/3 — (2/3)* = 2/9.
From Ex. 4.17:

1
E(Y)=[1.5y>+y*)dy :%w;]; =17/24=.708.
0

E(Yz)zj‘l.Sy“ +y*)dy :%HT“L =3/10+1/4=.55.

So, V(Y) . 55— (.708)2 = .0487.

From Ex. 4.18:

E(Y)= }.2ydy+j(.2y+1.2y2)dy =4, E(Y)= }.2y2dy+j(.2y2 +1.2y°)dy =1.3/3.
i’ q 5 0

So, V(Y) = 1.3/3 — (4)2 = .2733.
1. E(c)=ch(y)dy=coff(y)dy=c(1)=C-

2 E[cg(Y)]=Tcg(y)f(y)dy=CT9(y)f(y)dy=cE[g(Y)]-

3. E[gl(Y)+92(Y)+-~gk(Y)]=j[gl(y)+gz(y)+---gk(y)]f(y)dy

= Jo,(WTWdy+ [, f(ydy -+ [g () f(y)dy
= E[g,(Y)]+E[g,(Y)]+-E[g,(Y)].

V(Y)=E{[Y —E(Y)]*} = E{Y* —2YE(Y)+[E(Y)]*} = E(Y*) = 2[E(Y)]* +[E(Y)]’
=E(Y?)-[E(Y)] ="

Ex. 4.19:

E(Y):j.lzsydy+}.125y2dy=31/12, E(Yz):j.lzsyzdy+j.125y3dy:47/6.
So, V(Y)0= 47/6 — (321/12)2 = 1.16. 0 2

a. E(aY +b) = T(ay+b)f(y)dy: Tayf(y)dy+ ]gbf(y)dy:aE(Y)+b:ay+b.

b.V(aY +b)=E{[aY +b—E(aY +b)]*} =E{[aY +b—au—-b]*} = E{a’[Y — u]*}
=a’V(Y) = a’c".
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4.27

4.28

4.29

4.30

431

4.32

4.33

First note that from Ex. 4.21, E(Y) =.708 and V(Y) =.0487. Then,
E(W)=E(5 -.5Y)=5—-_.5E(Y)=5-.5(.708) = $4.65.

V(W) =V(5-.5Y)=25V(Y) =.25(.0487) = .012.

a. By using the methods learned in this chapter, ¢ = 105.

1
b. E(Y)= 105] y (1-y)*dy=3/8.
0

61 61
E(Y)=.5[ydy= SYTE =60, E(Y?)=.5[y*dy = .SVT"]Z ~3600%. Thus,
59 59

V(Y) =36001 — (60)*= 1.

1 1

a E(Y)=[2y*dy=2/3, E(Y*)=[2y’dy =1/2. Thus, V()= 1/2 - (2/3)° = 1/18.
0 0

b. With X = 200Y — 60, E(X) = 200(2/3) — 60 = 220/3, V(X) = 20000/9.

c. Using Tchebysheftf’s theorem, a two standard deviation interval about the mean is
given by 220/3 +2+/20000/9 or (-20.948, 167.614).

E(Y)= [y Xy -2)6-y)dy =4.

4
a. E(Y)=6—1jy3(4—y)dy=%[y4—y?]2 =2.4. V(Y)=.64.
0

b. E(200Y) = 200(2.4) = $480, V(200Y) = 200%(.64) = 25,600.

4
c. P(200Y > 600) =P(Y > 3) = %4[ y*(4—y)dy =.2616, or about 26% of the time the
3

cost will exceed $600 (fairly common).
f 4

a E()=3[yT-yrdy=22y ~4y +2] =55
5

7
E(Yz):%jy2(7—y)2dy:§%y3 — Lyt +V§]Z =30.4, s0 V(Y) = .15.
5

b. Using Tchebysheff’s theorem, a two standard deviation interval about the mean is
given by 5.5+ 2+/.15 or (4.725, 6.275). Since Y > 5, the interval is (5, 6.275).

5.5
c. P(Y <55)=% I(7 —y)*dy =.5781, or about 58% of the time (quite common).
5
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4.34

4.35

4.36

4.37

4.38

4.39

4.40

441
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E(Y)= T yF(y)dy = TU dtj f(y)dy =Tﬁ f (y)dy]dt =T P(Y > y)dy = T[l —F(y)ldy.
0 0\ 0 o\y 0 0

Let p=E(Y). Then, E[(Y —a)’]=E[(Y —p+p—-a)’]

= E[(Y —u)*]-2E[(Y —p)(u—-a)]+(u-a)’
=o' +(n—-a)’.

The above quantity is minimized when p = a.

This is also valid for discrete random variables — the properties of expected values used
in the proof hold for both continuous and discrete random variables.

© 0 o0
E(Y)= I yf (y)dy :J- yf (y)dy +I yf (y)dy . In the first integral, let w=—y, Then,
—0 —o0 0

E(Y)= —wa (—w)dy + T yf (y)dy = —wa (w)dy + T yf (y)dy =0.

0 y<0
y
a F(y)={[idy=y 0<y<l
0
1 y>1

b.P@a<Y<a+b)=F@+b)-F@=a+b-a=h.

The distance Y is uniformly distributed on the interval A to B, If she is closer to A, she
has landed in the interval (A, 28 ). This is one half the total interval length, so the

probability is .5. If her distance to A is more than three times her distance to B, she has

landed in the interval (382, B). This is one quarter the total interval length, so the

probability is .25.

The probability of landing past the midpoint is 1/2 according to the uniform distribution.
Let X = # parachutists that land past the midpoint of (A, B). Therefore, X is binomial with
n=3andp=1/2. P(X=1)=3(1/2)’ = .375.

1
62 _61

First find E(Y?) =

1 {y_T_ 0-0 _0:+0,0,+0}

0,
y’dy = = -
é': 92 - e1 3 0, 3(62 - e1) 3

V(Y) =

0°+0.0,+0° (0,40, ) (0,-0,)
1 1Y2 2 2 1 — 2 1 .
3 ( 2 j 12
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4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

451

4.52

y

The distribution function is F(y)= ;691 , for 0, <y <0, For F(¢5)=.5, then

2 1

¢, =01 +.5(0,—01)=.5(0, + 0;). This is also the mean if the distribution.

Let A = R*, where R has a uniform distribution on the interval (0, 1). Then,

1
E(A) = nE(R?) = n[ridr =§
0

V(A) = V(R = P[ER") - @ = n{f rtdr —@ } ) n{%_@ } i 4252 .

a. Y has a uniform distribution (constant density function), so k = 1/4.
0 y<-2

y
b. F(y)=1[4dy=2> -2<y<2
-2

1 y>2

Let Y = low bid (in thousands of dollars) on the next intrastate shipping contract. Then, Y
is uniform on the interval (20, 25).

a. P(Y<22)=2/5=4

b. P(Y>24)=1/5=.2.

Mean of the uniform: (25 + 20)/2 = 22.5.

The density for Y = delivery timeis f(y)=1,1<y<5. Also, E(Y) =3, V(Y)=4/3.

a. P(Y>2)=3/4.

b. E(C)=E(co+ciY?) =co+ ciE(Y?) = co+ ci[V(Y) + (E(Y))*] = Co + C1[4/3 + 9]

Let Y = location of the selected point. Then, Y has a uniform distribution on the interval
(0, 500).

a. P(475<Y<500)=1/20

b. PO<Y<25)=1/20

c. P(0<Y<250)=1/2.

If Y has a uniform distribution on the interval (0, 1), then P(Y > 1/4) = 3/4.

Let Y = time when the phone call comes in. Then, Y has a uniform distribution on the
interval (0, 5). The probability is P(0 <Y <1)+P(3 <Y <4)= 4.

Let Y =cycle time. Thus, Y has a uniform distribution on the interval (50, 70). Then,
P(Y>65|Y>55)=P(Y > 65)/P(Y > 55)=.25/(.75) = 1/3.

Mean and variance of a uniform distribution: p = 60, o° = (70-50)*/12 = 100/3.
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453 Let Y = time when the defective circuit board was produced. Then, Y has an approximate
uniform distribution on the interval (0, 8).
a. P(O<Y<1)=1/8.
b. P(7<Y<8)=1/8
C. PU<Y<S5|Y>4)=P@A<Y<5)/PY>4)=(1/8)/(1/2)=1/4.

454 LetY = amount of measurement error. Then, Y is uniform on the interval (.05, .05).
a. P0l1<Y<.0l)=.2
b. E(Y)=0, V(Y)= (.05 +.05)%/12 = .00083.

455 Let Y =amount of measurement error. Then, Y is uniform on the interval (.02, .05).
a. P.01<Y<.01)=2/7
b. E(Y)=(-02+.05)/2=".015, V(Y) = (.05 + .02)*/12 = .00041.

456 From Example 4.7, the arrival time Y has a uniform distribution on the interval (0, 30).
Then, P(25 <Y <301]Y > 10)=1/6/(2/3) = 1/4.

457  The volume of a sphere is given by (4/3)ar’ = (1/6)nd’, where r is the radius and d is the
diameter. Let D = diameter such that D is uniform distribution on the interval (.01, .05).

.05
Thus, E(2D*) = 2 Id *1dd =.0000065%. By similar logic used in Ex. 4.43, it can be

.01

found that V(£ D’ ) =.0003525x".

458 a.P(0<Z<12)=.5-.1151=.3849
b.P(-9<Z<0)=.5-.1841-.3159.
c.P(l3<Z<1.56)=.3821—-.0594 =.3227.
d.P(-2<72<.2)=1-2(.4207)=.1586.
e. P(-1.56 <Z<-2)=.4207 - .0594 = 3613
f. P(0 <Z <1.2) =.38493. The desired probability is for a standard normal.
459 a.zp=0.
b.zy=1.10
C.Zp=1.645
d. 20=2.576

4.60 The parameter c must be positive, otherwise the density function could obtain a negative
value (a violation).

4.61 Since the density function is symmetric about the parameter p, P(Y <) =P(Y > pn) = .5.
Thus, p is the median of the distribution, regardless of the value of c.

462 a.PZ’<1)=P(=1<Z<1)=.6826.
b. P(Z* < 3.84146) = P(-1.96 < Z < 1.96) = .95,
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4.63

4.64

4.65

4.66

4.67

4.68

4.69

4.70

471

4.72

4.73

a. Note that the value 17 is (17 — 16)/1 = 1 standard deviation above the mean.
So, P(Z>1)=.1587.
b. The same answer is obtained.

a. Note that the value 450 is (450 —400)/20 = 2.5 standard deviations above the mean.
So, P(Z>2.5)=.0062.

b. The probability is .00618.

c. The top scale is for the standard normal and the bottom scale is for a normal
distribution with mean 400 and standard deviation 20.

For the standard normal, P(Z > zp) = .1 if o = 1.28. So, Yo =400 + 1.28(20) = $425.60.

Let Y = bearing diameter, so Y is normal with p = 3.0005 and ¢ = .0010. Thus,
Fraction of scrap = P(Y > 3.002) + P(Y <2.998) =P(Z > 1.5) + P(Z <-2.5) = .0730.

In order to minimize the scrap fraction, we need the maximum amount in the
specifications interval. Since the normal distribution is symmetric, the mean diameter
should be set to be the midpoint of the interval, or p = 3.000 in.

The GPA 3.0 1s (3.0 — 2.4)/.8 = .75 standard deviations above the mean. So, P(Z>.75) =
.2266.

The z—score for 1.9 is (1.9 — 2.4)/.8 =—.625. Thus, P(Z <-.625) =.2660.

From Ex. 4.68, the proportion of students with a GPA greater than 3.0 is .2266. Let X =#
in the sample with a GPA greater than 3.0. Thus, X is binomial with n =3 and p = .2266.
Then, P(X = 3) = (.2266)* = .0116.

Let Y = the measured resistance of a randomly selected wire.
a. P(LI12<Y<.14)=P(E <7 <A818) =P(-2 <Z <2)=.9544.

005 — .005
b. Let X =# of wires that do not meet specifications. Then, X is binomial with n =4 and
p =.9544. Thus, P(X = 4) = (.9544)* = .8297.

Let Y = interest rate forecast, so Y has a normal distribution with p=.07 and 6 = .026.
a. P(Y>.11)=P(Z>-1=2)=P(Z>1.54)=.0618.
b. P(Y<.09)=P(Z>80)=P(Z>.77)=.77%4.

Let Y = width of a bolt of fabric, so Y has a normal distribution with p =950 mm and ¢ =

10 mm.

a. P(947 <Y <958) = P(HP0 <7 <380 =P(-3 <Z<.8)=.406

b. Tt is necessary that P(Y <c)=.8531. Note that for the standard normal, we find that
P(Z <zp) = .8531 when zp = 1.05. So, ¢ =950+ (1.05)(10) = 960.5 mm.
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474 LetY = examination score, so Y has a normal distribution with p = 78 and o* = 36.

a. P(Y>72)=P(Z>-1)=.8413.

b. We seek ¢ such that P(Y > ¢) =.1. For the standard normal, P(Z > zy) = .1 when z, =
1.28. Soc =78+ (1.28)(6) = 85.68.

c. We seek ¢ such that P(Y > c¢) = .281. For the standard normal, P(Z > zy) = .281 when
Zo=.58. So,c =78 +(.58)(6) = 81.48.

d. For the standard normal, P(Z <—.67) = .25. So, the score that cuts off the lowest 25%
is given by (—.67)(6) + 78 = 73.98.

e. Similar answers are obtained.

f. P(Y>84|Y>72)=P(Y>84)/P(Y>T72)=P(Z>1)/P(Z>-1)=.1587/.8413 = .1886.

475 LetY = volume filled, so that Y is normal with mean p and 6 = .3 oz. They require that
P(Y > 8) =.01. For the standard normal, P(Z > zy) = .01 when z, = 2.33. Therefore, it
must hold that 2.33 = (8 — p)/.3, so u=7.301.

4.76 It follows that .95 = P(|Y—p| < 1) = P(|Z| < 1/0), so that 1/6 = 1.96 or 6 = 1/1.96 = .5102.

477 a.LetY =SAT math score. Then, P(Y <550)=P(Z<.7)=0.758.

b. If we choose the same percentile, 18 + 6(.7) = 22.2 would be comparable on the ACT
math test.

4.78 Easiest way: maximize the function Inf (y) = —In(c+/27) —% to obtain the maximum

aty = p and observe that f (u) = 1/(cv/2m).

4,79  The second derivative of f (y) is found to be f "(y) = (%)%*(yf“)z/ 207 |_1 —(“;—zy)zj Setting

G N2m
this equal to 0, we must have that ll —(“;—ZV)ZJ = 0 (the other quantities are strictly positive).

The two solutions are y = pu + o and p — .

4.80 Observe that A= L*W = |Y|x3|Y| =3Y% Thus, E(A) = 3E(Y?) = 3(c” + 1)).
481 a T()=[e’dy=-e’] =1,
0
b. T'(a) = _[ y* e Vdy = [— y“’le’y]: + j(a ~y“?edy =(a—DI'(a.—1).
0 0

4.82 From above we have I'(1) =1, sothat I'(2) = 1I'(1) =1, I'(3) =2I'(2) = 2(1), and
generally I'(n) = (n-1)['(n—1) = (n—1)! T'(4)=3!=6and I'(7) =6! = 720.

4.83 Applet Exercise — the results should agree.
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4.84

4.85

4.86

4.87

4.88

4.89

4.90

491

a. The larger the value of a, the more symmetric the density curve.
b. The location of the distribution centers are increasing with a.
. The means of the distributions are increasing with a.

a. These are all exponential densities.
b. Yes, they are all skewed densities (decaying exponential).
C. The spread is increasing with f3.

a. P(Y <3.5)=.37412
b. P(W < 1.75) =P(Y/2 < 1.75) = P(Y < 3.5) = .37412.
c. They are identical.

a. For the gamma distribution, ¢ ,,=.70369.
b. For the % distribution, ¢ ,, =.35185.

c. The .05—quantile for the y* distribution is exactly one—half that of the .05—quantile for
the gamma distribution. It is due to the relationship stated in Ex. 4.86.

Let Y have an exponential distribution with § = 2.4,
a. P(Y>3)= jﬁeﬂ”‘*dy =e V4= 2865.
3

3

b. PQ<Y £3)=J‘Le‘y/“dy = .1481.

2.4
2

a. Note that J‘Ee‘y/ﬁdy =e?? =.0821,s0p=.8
2
b.P(Y<1.7)=1-e"""* = 5075

Let Y = magnitude of the earthquake which is exponential with B =2.4. Let X=# of
earthquakes that exceed 5.0 on the Richter scale. Therefore, X is binomial with n = 10

andp=P(Y>5)= Tﬁe_y/“dy =e¥>* = 1245. Finally, the probability of interest is
P(X > 1)5= 1-P(X=0)=1-(.8755)""=1- 2646 = .7354.
Let Y = water demand in the early afternoon. Then, Y is exponential with f = 100 cfs.
a. P(Y>200)= Tﬁe_y“oody =e” =.1353.
200

b. We require the 99" percentile of the distribution of Y:

P(Y > ¢gy) = j eV Pdy =e™» "% = 01. So, ¢, =-100In(.01) = 460.52 cfs.
4).99
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The random variable Y has an exponential distribution with § = 10. The cost C is related
to Y by the formula C = 100 + 40Y + 3Y2. Thus,

E(C) = E(100 + 40Y + 3Y?) = 100 + 40(10) + 3E(Y?) = 100 + 400 + 3(100 + 10%*) = 1100.
To find V(C), note that V(C) = E(C?) — [E(C)]>. Therefore,
E(C?) = E[(100 + 40Y + 3Y%)*] = 10,000 + 2200E(Y?) + 9E(Y*) + 8000E(Y) + 240E(Y?).
E(Y)=10 E(Y?) =200
E(Y?) = Ty3 e dy = '(4)100” = 6000.
0

E(YH) = j y* L-e™1%dy =I'(5)100* = 240,000.
0

Thus, E(C?) = 10,000 + 2200(200) + 9(240,000) + 8000(10) + 240(6000) = 4,130,000.

So, V(C) = 4,130,000 — (1100)* = 2,920,000.

Let Y = time between fatal airplane accidents. So, Y is exponential with = 44 days.
31

a. P(Y<3l)= jﬂe-y“‘“dy =1-e7"* = 5057.
0

b. V(Y)=44%=1936.

Let Y = CO concentration in air samples. So, Y is exponential with f = 3.6 ppm.
a. P(Y>9)= jS—}ée-y”"dy =e ¢ = 0821
9

b. P(Y>9)= I%e‘”“dy =e*5 = 0273
9

a.Foranyk=1,2,3, ...

PX=K) =Pk-1<Y<K) =P(Y<k) -P(Y<k—1)=1-e*P_(1—e®&DP
— g kB _ oW

b. P(X = k) = g VB _ g kB — o (k1B _ gk DIB(glB) — g V/B(| _ ol/By — [ 1]k (] _ g!/B).

Thus, X has a geometric distribution withp=1— e'?,
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4.96

4.97

4.98

4.99

4.100

4101

4.102

a. The density function f(y) is in the form of a gamma density with o =4 and § = 2.

Thus, k = ! 7 =i.
r4)y2* 96

b. Y has a y* distribution with v = 2(4) = 8 degrees of freedom.

c. E(Y)=4(2) =8, V(Y) =4(2%) = 16.

d. Note that 6 = v/16 =4. Thus, P(|Y — 8| <2(4))=P(0 <Y < 16) = .95762.
P(Y>4)= He‘y“‘dy e = .3679.
4

We require the 95™ percentile of the distribution of Y:

P(Y> ¢5) = [de7/*dy=e /" = 05. So, h, =—4In(.05) = 11.98.
o5

1
aP(Y>1)=>¢c=e'+e! =.7358

y=0
b. The same answer is found.

a.PX;=0)=e" andP(X,=0)=e ™. Sincely>L\;, 672 <e™.
b. The result follows from Ex. 4.100.

c. Since distribution function is a nondecreasing function, it follows from part b that
P(Xi <k) =P(Y>21) > P(Y > 12) = P(X2 <K)

d. We say that X, is “stochastically greater” than X;.

Let Y have a gamma distribution with o = .8, B = 2.4.

a. E(Y)=(.8)2.4)=1.92

b. P(Y>3)=.21036

c. The probability found in Ex. 4.88 (a) is larger. There is greater variability with the
exponential distribution.

d PQ2<Y<3)=P(Y>2)-P(Y>3)=.33979 — .21036 = .12943.

Let Y have a gamma distribution with o = 1.5, f = 3.
a. P(Y>4)=.44592.
b. We require the 95" percentile: ¢, = 11.72209.
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Let R denote the radius of a crater. Therefore, R is exponential w/ B = 10 and the area is
A=nR* Thus,

E(A) = E(nR?) = nE(R?) = n(100 + 100) = 200x.
V(A) = E(AY) — [E(A)]* = 7°[E(RY) — 200%] = n’[240,000 — 200°] = 200,00077,
where E(R*) = j% r‘e1°dr = 10*T(5) = 240.000.

0

Y has an exponential distribution with p = 100. Then, P(Y >200) =e 2! =¢2 Let the
random variable X = # of componential that operate in the equipment for more than 200
hours. Then, X has a binomial distribution and

P(equipment operates) = P(X >2) =P(X=2)+P(X=3)=3(e?)’(1-e?)+(e7)’ =.05.

Let the random variable Y = four—-week summer rainfall totals
a. E(Y)=1.6(2)=3.2,V(Y)=1.6(2% =64
b. P(Y>4)=.28955.

Let Y = response time. If =4 and o” = 8, then it is clear that o = 2 and = 2.
a. f(y)=4ye??,y>0.
b. P(Y<5)=1-.2873=.7127.

a. Using Tchebysheff’s theorem, two standard deviations about the mean is given by

4+2+/8 =4+5.657 or (-1.657,9.657), or simply (0, 9.657) since Y must be positive.
b. P(Y <9.657)=1-.04662 = 0.95338.

Let Y = annual income. Then, Y has a gamma distribution with o =20 and 3 = 1000.
a. E(Y)=20(1000) = 20,000, V(Y) = 20(1000)* = 20,000,000.
b. The standard deviation 6 = /20,000,000 =4472.14. The value 30,000 is 22220000

447214
= 2.236 standard deviations above the mean. This represents a fairly extreme value.
c. P(Y>30,000)=.02187

Let Y have a gamma distribution with a = 3 and p = 2. Then, the loss L = 30Y + 2Y>.
Then,

E(L) = E(30Y + 2Y?) = 30E(Y) + 2E(Y?) = 30(6) + 2(12 + 6°) = 276,

V(L) = E(L?) — [E(L)]* = E(900Y? + 120Y* + 4Y*) — 2762

o0 o0

E(Y) = [%e”" =480 E(Y!) = [%e”"? =5760

0 0

Thus, V(L)=900(48) + 120(480) + 4(5760) — 276> = 47,664.
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4.110 Y has a gamma distribution with a =3 and B =.5. Thus, E(Y) = 1.5 and V(Y) = .75.

ay _ a 1 a—1,-y/B o at+a—1,-y/B 1 T(a+o)B** _ Br(a+a)
4111 a. E(Y )_Jy F(a)B“y e’dy = r(a)B“,[y e”dy = [(a)B ! R O

b. For the gamma function I'(t), we require t > 0.

(1 r
c. E(Y') =Rl — b _ g3,

d. EGY)=E(Y")=L552 a>0.

e. EQ/Y)=E(Y =1 = 1o a> 1.

EQ/Y)=E(Y %) =BT T g s 5

JBr(a)?
2N _ -2 B2I(-2+a) _ B2 (a—2)
E(I/Y )_ E(Y ) I'(a) T (o-1)(a-2)[(a-2) ﬁ (a— 1)((1 2)° > & > 2

4.112 The chi—square distribution with v degrees of freedom is the same as a gamma
distribution with o =v/2 and § = 2.

a. From Ex.4.111, E(Y®)= zaiii?)

b. AsinEx. 4.111 with o +a > 0 and o = v/2, it must hold that v > -2a

C. E(\/?):E(Y-S):*Err((\?),v>0.
d. E(l/Y):E(Y_l)—% T v>2,
res
EQ/AY)=E(Y )= eV L
2 -2
BAND) =B ) =5 = v 7 4

4.113 Applet exercise.

4.114 a. This is the (standard) uniform distribution.
b. The beta density with o= 1, p = 1 is symmetric.
C. The beta density with a = 1, B = 2 is skewed right.
d. The beta density with o =2, f =1 is skewed left.
e. Yes.

4.115 a. The means of all three distributions are .5.
b. They are all symmetric.
C. The spread decreases with larger (and equal) values of a and .
d. The standard deviations are .2236, .1900, and .1147 respectively. The standard
deviations are decreasing which agrees with the density plots.
e. They are always symmetric when o = f3.
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a. All of the densities are skewed right.
b. The density obtains a more symmetric appearance.
c. They are always skewed right when a < and o> 1 and B > 1.

a. All of the densities are skewed left.
b. The density obtains a more symmetric appearance.
c. They are always skewed right when o > and a > 1 and B > 1.

a. All of the densities are skewed right (similar to an exponential shape).
b. The spread decreases as the value of  gets closer to 12.

c. The distribution with a = .3 and B = 4 has the highest probability.

d. The shapes are all similar.

a. All of the densities are skewed left (a mirror image of those from Ex. 4.118).
b. The spread decreases as the value of o gets closer to 12.

C. The distribution with o =4 and B = .3 has the highest probability.

d. The shapes are all similar.

Yes, the mapping explains the mirror image.

a. These distributions exhibit a “U” shape.
b. The area beneath the curve is greater closer to “1”” than “0”.

a.P(Y>.1)=.13418

b. P(Y<.1)=1-.13418 = .86582.

C. Values smaller than .1 have greater probability.
d. P(Y<.1)=1-.45176 =.54824

e. P(Y>.9)=.21951.
f.P(0.1<Y<0.9)=1-.54824 — 21951 = .23225.
g. Values of Y < .1 have the greatest probability.

a. The random variable Y follows the beta distribution with o =4 and § = 3, so the

— T e
constant K = +r55 =35 = 60.

b. We require the 95" percentile of this distribution, so it is found that ¢ ,; = 0.84684.

1

a. P(Y>.4)= [(12y* -12y*)dy = lay* —3y*], = 8208.
4

b. P(Y > .4) = .82080.

From Ex. 4.124 and using the formulas for the mean and variance of beta random
variables, E(Y) = 3/5 and V(Y) = 1/25.
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y
4126 a. F(y)=[(6t-6t*)dt=3y’ —2y*,0<y<1. F(y)=0fory<0and F(y)=1fory>1.
0

15

1.0

0.5
|

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

b. Solid line: f(y); dashed line: F(y) ’

C. P(5<Y <.8)=F(8)-F(.5)=1.92-1.092—.75+.25=.396.

4127 Fora=B=1, f(y)=—2_y"(1-y)™ =1, 0< y <1, which is the uniform distribution.

T(HI(D)

4,128 The random variable Y = weekly repair cost (in hundreds of dollars) has a beta
distribution with & = 1 and p = 3. We require the 90" percentile of this distribution:

P(Y >¢,)= [30-y)’dy=(1-¢,)’ =.1.
¢)

Therefore, ¢, = 1 —(.1)"” =.5358. So, the budgeted cost should be $53.58.

4129 E(C)=10+20E(Y) +4E(Y)=10+20(1) +4(Z+1) =2
V(C) = E(C?) — [E(C)I* = E[(10 + 20Y + 4Y?)*] — (22)

E[(10 + 20Y + 4Y%)*] = 100 + 400E(Y) + 480E(Y?) + 160E(Y?) + 16E(Y*
Using mathematical expectation, E(Y?) = - and E(YYH = &. So,

V(C) = E(C?) — [E(C)]* = (100 + 400/3 + 480/6 + 160/10 + 16/15) — (52/3)* = 29.96.
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To find the variance o = E(Y?) — p:

1
2N T'(a+B) o+l p-1 _ T(o+B) T(o+2)I(B) _ (a+l)a
ECY") = rorp I Yy (=Y)" Y = it Tz = @epash

2 _ (o+l)a

Y (0B )(a+p+D) (a+B)Z = (otp) (aspil) (a+[5+1)

This is the same beta distribution used in Ex. 4.129.

)
a. P(Y<.5)= [2(1-y)dy=2y-y*] =.75
0
b. E(Y)=1/3,V(Y)=1/18,s0 6 = 1//18 = .2357.

Let Y = proportion of weight contributed by the fine powders

E(Y)=.5 V(Y)=9/(36*%7) = 1/28

E(Y)=.5V(Y)=4/(16%5)=1/20

E(Y)=.5 V(Y)=1/(4*3)=1/12

. Case (a) will yield the most homogenous blend since the variance is the smallest.

oo oo

The random variable Y has a beta distribution with o =3, f = 5.
a. The constant ¢ = 75k = 75 =105.

E(Y)=3/8.

V(Y)=15/(64*%9) =5/192, s0o 6 = .1614.

P(Y > 375+ 2(.1614)) = P(Y > .6978) = .02972.

Qoo

a. Ifa =4 and B =7, then we must find

10 10 . .
PY <.7)=F(7)= Z[ : j(.7)I (.3)""" =P(4 < X < 10), for the random variable X

distributed as binomial with n =10 and p =.7. Using Table I in Appendix III, this is
.989.

b. Similarly, F(.6) = P(12 < X <25), for the random variable X distributed as binomial
with n =25 and p =.6. Using Table I in Appendix III, this is .922.

. Similar answers are found.
a.P(Y =0)=(1-p)">P(Y2=0)=(1-py)", since p; < ps.
n t“ (-t
b.P(Y{ <k =1-P;=>k+1)=1- 1- =
1=k =1-P(Yizk+1) Zmp( )’ IB(k+1n m
=1—-P(X<py)=P(X>p;), where is X beta with parameters k + 1, n — k.

c. From part b, we see the integrands for P(Y; < k) and P(Y, < k) are identical but since
p1 < P2, the regions of integration are different. So, Y is “stochastically greater” than Y.
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4.136

4.137

4.138

4.139

4.140

4.141

a. Observing that the exponential distribution is a special case of the gamma distribution,
we can use the gamma moment—generating function with a =1 and f = 6:

1
m(t)=——, t<1/6.
® 1-6t

b. The first two moments are found by m'(t) = ﬁ, E(Y)=m'(0)=6.
" _ 26 2N " _ 2 _ 2 2_n2
m (t)—m, E(Y?)=m"(0)=26". So, V(Y)=206"-6"=6".

The mgf for U is m, (t) = E(e" )= E(e"®*)=E(e”e™" ) =e"m(at). Thus,
m, (t) = be”m(at) +ae”m’(at). So, m|(0)=b+am'(0)=b+au=EU).

m/) (t) = b’*e” m(at) + abe™ m’(at) + abe™ m’'(at) + a’e”m’(at), so
m., (0)=b’ +2abp+a’E(Y?)=EU?).

Therefore, V(U) = b> +2abp+a’E(Y?) — (b+ap)’ = a’[E(Y?)-p’]=a’c>.

a. For U =Y — p, the mgf m; (t)is given in Example 4.16. To find the mgf for Y =U + ,
use the result in Ex. 4.137 witha=1,b=—p:

mY (t) — e—ptmu (t) — ept+czt2/2

b. m!(t) = (n+tc?)e" /% so ml(0)=p

my (1) = (u+1c”)’e" "% + %"/ 5o m{(0)=p* +c”. Finally, V(Y) = o".

Using Ex. 4.137 with a = -3 and b = 4, it is trivial to see that the mgf for X is
m, (t) = e‘“m(—3t) — p(43n9e’t /2

By the uniqueness of mgfs, X is normal with mean 4 — 3 and variance 95°.

a. Gamma witha =2, =4
b. Exponential with = 3.2
c. Normal with p=-5, 6* = 12

m(t)=E(e" )= j—wd = o=t

6,
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4142 a. m, (t)=52L

b. From the cited exercises, m,, (t) = ea;t‘l . From the uniqueness property of mgfs, W is

uniform on the interval (0, a).
c. The mgf for X is m, (t) =<1, which implies that X is uniform on the interval (-a, 0).

—-at
d. The mgf for Vis m, (t) = e™ £=L = &=
interval (b, b + a).

e(h+a)!_ bt

& which implies that V is uniform on the

4.143 The mgf for the gamma distribution is m(t) =(1—pt)™*. Thus,
m'(t) = af(1-Bt) ", so m'(0)= af = E(Y)

m"(t) = (o + Dap>(1 - Bt) 2, so M"(0) = (o +)ap® = E(Y?). So,
V(Y) = (a+Dap’ —(ap)’ = ap’.

4.144 a. The density shown is a normal distribution with p =0 and 6> =1. Thus, k =1/~/27 .

b. From Ex. 4.138, the mgfis m(t)=e"’2.
¢. E(Y)=0and V(Y) = 1.

0 _2
-0 5°

0
4145 a. E(e7%)= [ dy =2e""]

-N

t+1°

0
b. m(t)=E(e") = [e”e’dy =7, t>-1.
c. By using the methods with mgfs, E(Y)=—1, E(Y}) =2, s0 V(Y)=2 - (-1)* = 1.

4.146 We require P([Y— | < ko) >.90 =1 — 1/k*. Solving for k, we see that k = 3.1622. Thus,
the necessary interval is [Y— 25,000| < (3.1622)(4000) or 12,351 < 37,649.

4.147 We require P(|Y— | <.1)>.75=1 - 1/k%. Thus, k =2. Using Tchebysheff’s inequality,
1 =ko and so 6 =1/2.

4.148 In Exercise 4.16, u=2/3 and 6 = +2/9 = .4714. Thus,
P(Y — | <20) =P(]Y — 2/3] <.9428) = P(-.2761 <Y < 1.609) = F(1.609) = .962.

Note that the negative portion of the interval in the probability statement is irrelevant
since Y is non—negative. According to Tchsebysheft’s inequality, the probability is at
least 75%. The empirical rule states that the probability is approximately 95%. The
above probability is closest to the empirical rule, even though the density function is far
from mound shaped.
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4.149

4.150

4.151

4.152

4.153

4.154

For the uniform distribution on (6, 8,), u= 2% and 6* = % . Thus,

_ (0,-0)
20 N

The probability of interest is

P(Y -1 <20) =P(n—20 <Y <p+20) = P(A3f <y < Ak + ()

2

It is not difficult to show that the range in the last probability statement is greater than the
actual interval that Y is restricted to, so

P( 91;92 _(9%91)5 Y < 91;92 _i_(Gz[—fl) )=P(0,<Y<0))=1.

Note that Tchebysheff’s theorem is satisfied, but the probability is greater than what is
given by the empirical rule. The uniform is not a mound—shaped distribution.

For the exponential distribution, p = p and o* = B> Thus, 26 = 2p. The probability of
interest is

P(Y — 1| <26) =P(u—-26 <Y< p+206)=P(B<Y<3B)=PO<Y<3P)

This is simply F(3B) =1 — e P =.9502. The empirical rule and Tchebysheff’s theorem
are both valid.

From Exercise 4.92, E(C) = 1000 and V(C) = 2,920,000 so that the standard deviation is
42,920,000 =1708.80. The value 2000 is only (2000 — 1100)/1708.8 = .53 standard
deviations above the mean. Thus, we would expect C to exceed 2000 fair often.

We require P(|L— p < ko) >.89 = 1 — 1/k>. Solving for k, we have k =3.015. From Ex.
4.109, n =276 and o = 218.32. The interval is

IL—276] <3.015(218.32) or (-382.23, 934.23)
Since L must be positive, the interval is (0, 934.23)

From Ex. 4.129, it is shown that E(C) = 2 and V(C) = 29.96, so, the standard deviation
184/29.96 = 5.474. Thus, using Tchebysheft’s theorem with k = 2, the interval is

Y — 52| <2(5.474) or (6.38, 28.28)

apn=70=207)=14.
b. Note that 6 = /14 =3.742. The value 23 is (23 — 7)/3.742 = 4.276 standard

deviations above the mean, which is unlikely.
c. Witha=3.5and =2, P(Y>23)=.00170.
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The random variable Y is uniform over the interval (1, 4). Thus, f(y)=1 for1 <y<4
and f(y)=0 elsewhere. The random variable C = cost of the delay is given as
100 1<y<2
C=g(Y)=
100+20(Y —-2) 2<y<4
2

Thus, E(C)=E[g(Y)]= [g(y)f(y)dy = [“Ldy+ [[100+20(y —2)]4dy =$113.33.

1

4.156 Note thatY is a discrete random variable with probability .2 + .1 = .3 and it is continuous

4.157

4.158

4.159

with probability 1 —.3 =.7. Hence, by using Definition 4.15, we can write Y as a mixture
of two random variables X; and X,. The random variable X is discrete and can assume
two values with probabilities P(X; = 3) = .2/.3 =2/3 and P(X; = 6) =.1/.3 = 1/3. Thus,
E(X)) =3(2/3) + 6(1/3) = 4. The random variable X; is continuous and follows a gamma
distribution (as given in the problem) so that E(X;) = 2(2) = 4. Therefore,

E(Y) = .3(4) +.7(4) = 4.

0 Xx<0

a. The distribution function for X is F(x) = J-ﬁe"moodx =1-e" 0<x<200.
0

1 X =200
200

b. EX)= [ xgiye™"*dx+.1353(200) = 86.47, where .1353 = P(Y > 200).
0

The distribution for V is gamma with o =4 and § = 500. Since there is one discrete point
at 0 with probability .02, using Definition 4.15 we have that ¢; = .02 and ¢, = .98.
Denoting the kinetic energy as K = %Vz we can solve for the expected value:

E(K)=(.98) 2 E(V?) = (.98) ™ {V(V) + [E(V)]*} = (.98) ™ {4(500)* + 20007} = 2,450,000m.

a. The distribution function has jumps at two points: y = 0 (of size .1) and y = .5 (of size
.15). So, the discrete component of F(y) is given by

0 y<0
F(y)={3==4 0<y<5
1 y>.5

The continuous component of F(y) can then by determined:
0 y <0
4y*/3  0<y<.5
Fz (y)=
4y-1)/3 S5<y«<l
1 y>1
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4.160

4.161

4.162

4.163

4.164

4.165

b. Note that ¢; =.1 +.15=25. So, F(y)=0.25F,(y)+0.75F,(y).

First, ob that f,(y)=F)(y)= By/3 0<y<.3 Th
c. First, observe that f,(y)=F/(y)= 4/3 y>5 us,

5 1
E(Y)=.25(6)(.5)+ [8y”/3dy + [4y/3dy =533 . Similarly, E(Y}) = .3604 so
0 5

that V(Y) = .076.

n(1+y?)

Y
a. F(y)zf 2—dy=2tan"'(y)+4,-1<y<LF(y)=0if y<0, F(y)=1if y>1.
-1

b. Find E(Y) directly using mathematical expectation, or observe that f(y) is symmetric
about 0 so using the result from Ex. 4.27, E(Y) = 0.

Here, p =70 and o = 12 with the normal distribution. We require ¢, the 90™ percentile
of the distribution of test times. Since for the standard normal distribution, P(Z < zp) =.9
for zo = 1.28, thus

d, =70+ 12(1.28) = 85.36.

Here, p = 500 and 6 = 50 with the normal distribution. We require ¢ ,,, the 1% percentile
of the distribution of light bulb lives. For the standard normal distribution, P(Z < zy) =
.01 for zo =-2.33, thus

¢, =500+ 50(-2.33) =383.5

Referring to Ex. 4.66, let X = # of defective bearings. Thus, X is binomial with n =5 and
p = P(defective) = .073. Thus,

PX>1)=1-P(X=0)=1-(.927)’ = .3155.

Let Y = lifetime of a drill bit. Then, Y has a normal distribution with p = 75 hours and
o =12 hours.

a. P(Y<60)=P(Z<-1.25)=.1056

b. P(Y>60)=1-P(Y<60)=1-.1056 =.8944.

c. P(Y>90)=P(Z>1.25)=.1056

The density function for Y is in the form of a gamma density with o =2 and = .5.

= 1 =
a. c O 4.

b. E(Y)=2(.5)=1,V(Y)=2(.5)= 5.
c. mity=—L-,t<2.

(1-5t)* 2
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4.167

4.168

4.169

4.170
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In Example 4.16, the mgfis m(t) = e""/2 The infinite series expansion of this is

3
m(t) :1+<%)+(%)2%+(‘2§2) L T

Then, p; = coefficient of t, so u; =0
1, = coefficient of t2/2!, SO Up = o’
w3 = coefficient of t3/3!, sous=0
1y = coefficient of t'/4!, so py = 36"

For the beta distribution,

1 1

ky k T(atB) ,0-1 B-1 4y, — T(a+B) k+a-1 B-1 _ T(a+B) T(k+a)T'(B)
E(Y ) - .[ y T(a)I(B) y (1 - y) dy ~ T(a)T(B) J- y (1 - y) dy T T()I(B) T(k+a+p) *
0

Ky _ T(o+p)I(k+a)
Thus, E(Y") = fafiios.
Let T = length of time until the first arrival. Thus, the distribution function for T is given

by
F(t)=P(T<t)=1-P(T>t)=1—P[no arrivals in (0, t)] = 1 — P[N =0 in (0, t)]

The probability P[N =0 in (0, t)] is given by (M) = S Thus, F(t)=1— e Mand

f(t)y=re™, t>0.
This is the exponential distribution with § = 1/A.

Let Y = time between the arrival of two call, measured in hours. To find P(Y > .25), note
that At=10 and t = 1. So, the density function for Y is given by f(y) = 10e'%, y > 0.
Thus,

P(Y> 25)=¢ %) =2 = 082.

a. Similar to Ex. 4.168, the second arrival will occur after time t if either one arrival has
occurred in (0, t) or no arrivals have occurred in (0, t). Thus:

P(U > t) = P[one arrival in (0, t)] + P[no arrivals in (0, t)] = (M);!em + (“)llffm . So,

F)=1-PU>t)=1- 20"  (0e? —1_ it4])e™,
The density function is given by f(t)=F'(t)=A’te™, t>0. This is a gamma density
with a =2 and B = 1/A.

k-1
b. Similar to part a, but let X = time until the k™ arrival. Thus, P(X>1)= z(“% . So,
=0
k-l Otyle n
o
FO=1- ) —.
n=0
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The density function is given by

k— k-1 k-1 k-1
e m m -t o| A ot (At)" (at)™!
f(t) =F (t) - _{ z (n- 1)!} =Ae { n (n-1)! } . Or,
=0 n=1
kk k— l -t

f(t) =245, t>0. This is a gamma density with a =k and = 1/A.

4171 From Ex. 4.169, W = waiting time follow an exponential distribution with § = 1/2.
a. E(W) =1/2, V(W) = 1/4.

b. P(at least one more customer waiting) = 1 — P(no customers waiting in three minutes)
=1-¢"

4.172 Twenty seconds is 1/5 a minute. The random variable Y = time between calls follows an
exponential distribution with f =.25. Thus:

P(Y > 1/5) = j4e-4ydy e’

1/5
4.173 Let R = distance to the nearest neighbor. Then,
P(R >r) = P(no plants in a circle of radius r)

Since the number of plants in a area of one unit has a Poisson distribution with mean A,
the number of plants in a area of «r” units has a Poisson distribution with mean Azr’.
Thus,

Fn=PR<rn=1-PR>r=1-¢e"
So, f(r)=F'(t)=2Arre™ ,r>0.

4,174 LetY = interview time (in hours). The second applicant will have to wait only if the time
to interview the first applicant exceeds 15 minutes, or .25 hour. So,

P(Y>.25)= [2¢™dy=e"* = .61,

25

4.175 From Ex. 4.11, the median value will satisfy F(y)=y”/2=.5. Thus, the median is
given by J2=1414.

4.176 The distribution function for the exponential distribution with mean B is F(y)=1-e¥'?.
Thus, we require the value y such that F(y)=1-e™¥'? =.5. Solving for y, this is BIn(2).
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4177 a.2.07944 =3In(2)

4.178

4.179

b. 3.35669 < 4, the mean of the gamma distribution.
C. 46.70909 < 50, the mean of the gamma distribution.
d. In all cases the median is less than the mean, indicating right skewed distributions.

15

1.0

fy)

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

The graph of this beta density is above. ’

a. Using the relationship with binomial probabilities,
P(1<Y<.2)=4(2)(8)+(2)' = 4(.1)’(.9) - (.1)* = .0235.

b. P(.1<Y<.2)=.9963 —.9728 =.0235, which is the same answer as above.

C. ¢, =.24860, ¢, =.902309.

d. P(dos <Y< d4)="9.

Let X represent the grocer’s profit. In general, her profit (in cents) on a order of 100k
pounds of food will be X =1000Y — 600k as long as Y <k. But, when Y >k the grocer’s
profit will be X = 1000k — 600k = 400k. Define the random variable Y’ as

Y'—Y 0<Y <k
1k Y=k

Then, we can write g(Y’') = X =1000Y’ + 600k. The random variable Y’ has a mixed
distribution with one discrete point at K. Therefore,

1
C1 :P(Y':k):P(Y Zk):j3y2dy=1—k3,SOthat02=k3,
k

0 0<y<k [sea
Thus, Fy(y)=1, VoK and F,(y)=P(Y,<y[0<Y'<k)=2 =X 0<y<k

k3
Thus, from Definition 4.15,

E(X)=E[g(Y")]=c,E[g(Y)]+C,E[g(Y,)]=(1-k*)400k + k3_[(1000y—600k)%2dy,

or E(X) = 400k — 250k*. This is maximized at k = (.4)"” = .7368. (2™ derivative is —.)



88

www.elsolucionario.net

Chapter 4: Continuous Variables and Their Probability Distributions

Instructor’s Solutions Manual

4.180

4181

4.182

4.183

4.184

4.185

4.186

2
a. Using the result of Ex. 4.99, P(Y <4)=1- ) #¢%=.7619.

y!
y=0

b. A similar result is found.

The mgf for Zism, (t) = E(e%) = E(e"* ") =e *'m, (t/5) ="', which is a mgf for a
normal distribution with p=0and ¢ = 1.

a. P(Y <4)=P(X < In4) = P[Z < (In4 — 4)/1] = P(Z <-2.61) = .0045.
b. P(Y > 8) = P(X > In8) = P[Z > (In8 — 4)/1] = P(Z > ~1.92) = .9726.

a. E(Y)=e""? =¢'" (598.74 g), V(Y) = e”(e'"° -1)107*.
b. With k = 2, the interval is given by E(Y) + 2.V (Y) or 598.74 + 3,569,038.7. Since the

weights must be positive, the final interval is (0, 3,570,236.1)
c. P(Y <598.74) = P(InY < 6.3948) = P[Z < (6.3948 — 3)/4] = P(Z < .8487) = .8020

0 0 0 o
The mgf forY is m, (t) =E(e") = %J‘etyeydy +%J'etye‘ydy = %J'e““”dy +§J'e‘y“‘”dy :
o 0 Es) 0

This simplifies to m, (t)=—. Using this, E(Y) = m'(t)],_, =—2-|_, =0.

(1-t%)

a [f(yydy=a[f(ydy+(1-a)[f,(y)dy=a+1-a)=1.

b, LE(Y)=[yf(y)dy =a [ yf,(y)dy+(1-a) [ yf,(y)dy =ap, +(1-a),

—o0

i E(Y,) =a [y fi(ydy+(1-a) [y* f,(y)dy =a(u] +o})+(1-a)u3 +53). So,

V(Y) = E(Y*) - [E(Y)]* = a(u] +07)+(1-a)(u; +03)—[ap, +(1-a)u,]*, which
simplifies to ac’ +(1-a)os +a(l—a)u, —u, 1’

o
2Ju

0 2 o0
E(Y)= J-zie_yz/“dy = x/ajul/ze‘“du =Jal(3/2) = w. Using similar methods,
0 o 0

Form=2, E(Y)= I yﬂe_yz/“dy. Let u=y%o. Then, dy = du. Then,
a
0

2
it can be shown that E(Y?)=a so that V(Y) =0 — {@} = o{l —g} , since it will

be shown in Ex. 4.196 that ['(1/2) = v/ .
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The density for Y = the life length of a resistor (in thousands of hours) is
f(y)=5—, y>0.

a. P(Y>5)= j”e "y = eV 0] —e = 082,
5
b. Let X =# of resistors that burn out prior to 5000 hours. Thus, X is a binomial random
variable with n =3 and p = .082. Then, P(X = 1) = 3(1 —.082)(.082)* = .0186.

a. This is the exponential distribution with B = a.
b. Using the substitution u=y"/a in the integrals below, we find:

o0

E(Y)=[2yme”" “dy = a”mju”m edu=a'"T(1+1/m)

0

E(Y?)= J' y™le " edy = a2/mju2/m eldu=a""T(1+2/m).
0

Thus,
VY)=a”"[[A+2/m)+T*(1+1/m)].

Since this density is symmetric about 0, so using the result from Ex. 4.27, E(Y) = 0.
Also, it is clear that V(Y) = E(Y?). Thus,

1 . B(3/2,(n-2)/2 1

BV =] B(1/2 (n—2)/2)y2(1_y2)( iy = B((I/Z ((n 23/2)) n—1
-1 H

equality follows after making the substitution U = y .

= V(Y). This

a. For the exponential distribution, f(t)=+e™" and F(t)=1-e™"". Thus, r(t) = 1/[3

b. For the Weibull, f(y)="—e"'*and F(y)=1-e"*'*. Thus, r(t)=
an increasing function of t When m>1.

P(c<Y<y) F(y)-F(c)

P(Y>c)  1-F(c)
b. Refer to the properties of distribution functions; namely, show G(-o0) =0, G(x) =1,
and for constants a and b such that a<b, G(a) < G(b).

a. G(y)= P(Y <y|Y >¢c)=

c. It is given that F(y)=1—e"Y"*. Thus, by using the result in part b above,

1_e412/3 —(1—6722/2

-4
—22/2 :
e

=l-e

PiY<4|Y>=2)=

a. E(V)=4n(z2= 3’/2J.V3e“’2(””2'mdv To evaluate this integral, let u = v?(5%-) so that

dv = /28T I—du to obtain E(V)= 21/2r§gjue‘”du 2T (@) =23
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4.193

4.194

4.195

4.196

4.197

b. EEmV?)=1mEV?)=2mm(: )3/zjv4e‘vz(m/2KT)dv . Here, letu= v?(32) so that
0

dv = /25" 5=du to obtain E(zmV )= 2EI(3) =3 KT (here, we again used the result

from Ex. 4.196 where it is shown that ['(1/2) = Jn ).

For f(y)=5e""", we have that F(y)=1-¢""""". Thus,
E(Y |Y zsm:#[%’o‘“dy:lso.
50

Note that this value is 50 + 100, where 100 is the (unconditional) mean of Y. This
illustrates the memoryless property of the exponential distribution.

[ﬁ J-Ef(”z)”y2 dy}{ﬁ J.e*(”z)ux2 dx} =L j '[e’(”z)”("z*yz)dxdy . By changing to polar

—00 —00 —00

coordinates, X* + y* = r* and dxdy = rdrd0. Thus, the desired integral becomes

21 o

[ [e > rdrdo =1
00
Note that the result proves that the standard normal density integrates to 1 with u = 1.
a. First note that W = (Z* + 32)* = Z* + 6Z° + 9Z>. The odd moments of the standard
normal are equal to 0, and E(Z?) = V(Z) + [E(Z)]*=1 + 0 = 1. Also, using the result in
Ex. 4.199, E(Z") = 3 so that E(W) =3 + 9(1) = 12.

b. Applying Ex. 4.198 and the result in part a:
PW <w)>1-£ =9,
so that w = 120.

r{a/2)= j y?e7Vdy = Iﬁe‘“““z dx = ﬁ\/ﬂjﬁe‘“”“z dx = 24/n[t]=+/n (relating
0 0 0

the last integral to that P(Z > 0), where Z is a standard normal random variable).

a. Let y = sin®0, so that dy = 2sinfcos0df. Thus,
1

/2 n/2

B(a,p) = j vy (1—y)dy =2 .[sinz‘)“2 0(1—sin’0)"'do =2 J.sinz‘)‘_1 Bcos* ' d0, using
0 0 0

the trig identity 1—sin” 0 =cos’ 0.
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b. Following the text, I'(a)[(B) = I y“‘le‘ydyjzﬁ‘le‘zdz = I j y* 'z 'e”*dydz . Now,
0 0 00

use the transformation y =r”cos’ 0, X =r>sin’> 0 so that dydz =4r’ cosfsin0.
Following this and using the result in part a, we find

I'(a)[(B) = B(a, B)T r2@$De " rdr |

A final transformation with x = r? gives T'(a)['(B) = B(a,p)['(o.+P) , proving the result.

Note that

E[gM1= [lan | fdy= [lgy)| f(y)dy > [kf(y)dy =kP(g(¥)[>k),
—© lg(y)>k l9(y)>k
Since | g(y)|> k for this integral. Therefore,

Plag(V)Isk)=1-E(g(Y)D/k.

a. Define g(y)=y*'e”’"’? for positive integer values of i. Observe that g(-y) =—g(y)
so that g(y) is an odd function. The expected value E(Zz'_l) can be written

asE(Zz"™") = J-ﬁg(y)dy which is thus equal to 0.

b. Now, define h(y)= yZie_yz/ > for positive integer values of i. Observe that
h(-y) =h(y) so that h(y) is an even function. The expected value E(Z*') can be written

asE(Z%) = J.J;? h(y)dy = J.ﬁh(y)dy . Therefore, the integral becomes
- 0

E(Z™) = [F-yYe” Pdy =4 [2'w e dw = L2'T(i +1/2).
0 0

In the last integral, we applied the transformation w = z%/2.

c. E(Z*)=-2'T(1+1/2)=-2'(1/20n =1
E(Z*)=-L2"T(2+1/2)=-L22(3/2)(1/2)n =3
E(Z6):ﬁ23r(3+1/2):ﬁ23(5/2)(3/2)(1/2)\/;=15
E(Z°)=-L2'T(4+1/2)=-L2*(7/2)(5/2)(3/2)(1/2)Jr =105.

d. The result follows from:

T1@i-D=[2(i-1/2) =2‘]i'[(j —1/2)=2' T +1/2)(L)=E2™).
j=i j=i j=i
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4200 a E(Y?)= b j y" e 1=y Y = ot ), = Tt
b. The value o + a inust be positive in the beta density.
c. Witha =1, E(Y')=Febrie _ o
d. Witha= 1/2, E(Y"/?) = Kbz
e Witha=—1, E(Y ") =f&hieg—abd o>

: — =1/2 T'(o+p)(a-1/2
Witha=-1/2, E(Y "?) = gl o> 172

: _ -2y _ F(a+p)'(a=2) _ (a+p-D(o+p-2)
Witha=-2, E(Y ") = Tty = (aa > ¢~ 2.
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5.1 a. The sample space S gives the possible values for Y; and Y;:
S AA | AB | AC BA BB BC | CA| CB | CC
VYY) 2,0 1LD L0, 1H[0,2)]1,0]d,0[(0,1)](0,0)
Since each sample point is equally likely with probably 1/9, the joint distribution for Y;
and Y, is given by
Yi
0O 1 2
0|19 2/9 1/9
y 112/9 2/9 0
2119 0 0
b. F(1, 0)=p(0, 0) + p(1,0)=1/9 +2/9 =3/9 = 1/3.
5.2 a. The sample space for the toss of three balanced coins w/ probabilities are below:
Outcome | HHH | HHT |HTH | HTT | THH | THT |TTH |[TTT
(Y1, ¥2) GDGDHIEDH A,1D|22][d,2)[d,3)]0,-1)
probability | 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Yi
0o 1 2 3
-1|1/8 0 0 0
y. 1|0 1/8 2/8 1/8
210 1/8 1/8 0
310 18 0 0
b. F(2,1)=p(0,-1)+p(1, 1) +p2, 1)=1/2.
5.3

Note that using material from Chapter 3, the joint probability function is given by

bl
Y

P(Y1, Y2) =P(Y1=y1, Y2=Yy2) = ,where 0 <y, 0<y,, and y; + Yy, <3.

In table format, this is

Y1
0 1 2 3
0 3/84 6/84 1/84
Yo 4/84 24/84 12/84 0
12/84 18/84 0 0
3| 4/84 0 0 0

93
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5.4

5.5

5.6

5.7

5.8

5.9

5.10

a. All of the probabilities are at least 0 and sum to 1.
b. F(1,2)=P(Y; <1, Y,<2)=1. Every child in the experiment either survived or didn’t
and used either 0, 1, or 2 seatbelts.

172 1/3
a P(Y, <1/2,Y,<1/3)= [ [3y,dy,dy, =.1065.
0 0
1 /2

b. P(Y, <Y,/2)=[ [3y,dy,dy, =.5.
0

0

.5

jldY1dY2 —I yl Y, A :f(j_yz)dyz =.125.
i 0

Y2 +.5

a. P(Y, =Y, >.5)=P(Y,>.5+Y,) =

O Cm—y i

1 1 1
b.P(Y,Y, <.5)=1-P(Y,Y, >.5)=1-P(Y, >.5/Y,)=1-[ [ldy,dy, =1-[(1-.5/y,)dy,
5.5/y, 5

— 1 —[.5+.5In(.5)] = .8466.

a. P(Y, <1,Y, >5) =j Te‘(y‘””dyldyz =Ue‘yl dy, }ﬁe‘”dyz} =[1-e" | =.00426.
05 0 5

372

y
b. P(Y, +Y, <3)=P(Y, <3-Y,)=[ [e " dy,dy, =1-4e" = 8009.
0

S C—y L

11
a. Since the density must integrate to 1, evaluate I I ky,y,dy,dy, =k/4=1,sok=4.
00

Y2 Yi

b' F(ylayz)z P(Yl < ylaYz < yz):4jjtlt2dtldt2 = y12y225 OSYI S 15 ()SyzS 1
00

c. P(Y1 <172, Y, < 3/4) = (1/2)*(3/4)* = 9/64.

LY

a. Since the density must integrate to 1, evaluate I jk(l —y,)dy,dy, =k/6=1,sok=6.
00

b. Note that since Y; <Y, the probability must be found in two parts (drawing a picture is

useful):
3/4 1

P(Y153/4,Y221/2)—j j6(1 y, )dy,dy, + j j6(1 y,)dy,dy, =24/64 + 7/64 = 31/64.

1/2 1/2 1/2y,

a. Geometrically, since Y; and Y, are distributed uniformly over the triangular region,
using the area formula for a triangle k = 1.

b. This probability can also be calculated using geometric considerations. The area of the
triangle specified by Y; > 3Y, is 2/3, so this is the probability.
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The area of the triangular region is 1, so with a uniform distribution this is the value of
the density function. Again, using geometry (drawing a picture is again useful):

a. P(Y<3/4,Y,<3/4)=1-P(Y,>3/4)—P(Y,>3/4)=1-1(1)1)-1(1)1)=2.
b. P(Y;-Y,>0)=P(Y;>Y;). The region specified in this probability statement
represents 1/4 of the total region of support, so P(Y; > Y,) = 1/4.

Similar to Ex. 5.11:
a. P(Y<3/4,Y,<3/4)=1-P(Y,>3/4)—P(Y,>3/4)=1-1()1)-1(1)1)=1.
1/2 1/2
b. P(Y,<1/2,Y,<1/2)= [ [2dy,dy, =1/2.
0 0
/2 1/2

9
a F(1/2,1/2)= [ [30y,y;dy,dy, =
0 y-l1

b. Note that:

F(1/2,2)=F1/2,1)=P(Y, <1/2,Y, <1)=P(Y, <1/2,Y, <1/2)+ P(Y, <1/2,Y, > 1/2)
So, the first probability statement is simply F(1/2,1/2) from part a. The second
probability statement is found by

11y,
P(Y, <1/2.Y, >1/2)=j j30y1y§dy2dy=i.
1/2 0 16
Thus, F(1/2, 2)=2+i=2.
16 16 16
N 11 21
c. PCY, >Y,)=1-P(Y, <Y,)=1- 30y, y2dy, dy, =1—-—="==.65625.
Y, >Y,) (Y, <Y,) !yflylyzyzyl TRED
1 2-y,
a. Since f(y,,Yy,)=0, simply showJ. I6y12y2dy2dyl =1.
0 vy

S5 1=y
b. P(Y, +Y, <)=P(Y, <1-Y,)=[ [6y]y,dy,dy, =1/16.
0

Y1

2y 22
a P(Y, <2,Y,>1)=|[e™dy,dy, = [ [e™dy,dy, =e™ —2¢7.
11 1y,

b. P(Y, 22Y,)= [e™dy,dy, =1/2.

02y,

c. P(Y, =Y, 2D)=P(Y, 2Y, +1) = [e™dy,dy, =e".

0 y,+
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1 1/2
516 a. P(Y1<1/2,Y2>1/4):_[ I(yl+y2)dy1dy2=21/64=.328125.

174 0
1 1=y,
b. P(Y, +Y, <1)=P(Y, sl—Yz)z_[ j(yl +y,)dy,dy, =1/3.
0

0
5.17 This can be found using integration (polar coordinates are helpful). But, note that this is

a bivariate uniform distribution over a circle of radius 1, and the probability of interest
represents 50% of the support. Thus, the probability is .50.

11

1 1

5.19 a. The marginal probability function is given in the table below.

Vi 0 1 2
pi(y1) | 4/914/9|1/9

b. No, evaluating binomial probabilities with n =3, p = 1/3 yields the same result.

5.20 a. The marginal probability function is given in the table below.

Y2 -1 1 2 3
pa(y2) | 1/8 | 4/8 | 2/8 | 1/8

b. P(Y, =3|Y, =1) =020 _ 18 _ /4

P(Y,=1) 4/8

5.21 a. The marginal distribution of Y; is hypergeometric with N =9, n =3, and r = 4.

b. Similar to part a, the marginal distribution of Y; is hypergeometric with N=9, n= 3,

and r = 3. Thus,
P(Yl =1 |Y2 — 2) _ Ptn=LY,=2) _ (T][ZJ((Z))/[;][T] =2/3.

P(Y2) [Qj (9]
3 3
C. Similar to part b,

3\(2)(4
P(Y; =1 |Y2 =1)=P(Y, =1 |Y2 =)= P(gl(?lz’zzl):l) — (JE%[J/ 1
3

5.22 a. The marginal distributions for Y; and Y; are given in the margins of the table.
b. P(Yo=0]Y;=0)=.38/.76=.5 P(Y2=1|Y;=0)=.14/76 = .18
P(Y2=2|Y,=0)=.24/76 = .32
C. The desired probability is P(Y;=0| Y, =0) = .38/.55 = .69.
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1
a. fz(yz) = I3y1dy1 :%_%yzza 0< y, < 1.
Y2
b. Defined over y, <y; < 1, with the constant y, > 0.

Y
c. First, we have f,(y,)= J-3yldy2 =3y2,0<y, <1. Thus,
0

f(y,|y))=1/y,,0<y, <y,. So, conditioned on Y; =Yy, we see Y, has a uniform

distribution on the interval (0, y;). Therefore, the probability is simple:
P(Yo>1/21Y,=3/4)=(3/4-1/2)/(3/4) = 1/3.

a. f(y)=L0<y, <1, f,(y,)=1,0<y, <I.

b. Since both Y, and Y; are uniformly distributed over the interval (0, 1), the probabilities
are the same: .2

c.0<y,<I.

d. f(yl ‘ yz): f(Yl):LOS Y <1

e.P(3<Y;<.5]Y,=.3)=.2

FL.P(3<Y,<.5|Y,=.5)=.2

g. The answers are the same.

a. f(y))=e",y,>0, f,(y,)=e,y, >0. These are both exponential density
functions with B = 1.

b. P(1<Y, <25 =P(1<Y, <25)=e" -’ =.2858.

C.y.>0.

d. f(yl |Y,) = fl(yl):eiyl, y, >0.

e. f(y,ly)= fz(yz):eiyz, Yy, >0.

f. The answers are the same.
g. The probabilities are the same.

o))

1
: fl(y1)=I4y1y2dY2 =2y1>0S Y <l f()/2)=2y2a0S Y, <1.
0

1/2

1
[ [ayy.dydy, ,

b. P(Y, <1/2|Y, >3/4) =234 = [2y,dy, =1/4.
[2y.dy, ’
3/4

C. f(yl | yz): fl(yl)zzylaoS y, <1.

o

. f(y2|y1): fz(yz)ZZyZ,OSyZSI.

3/4

- P(Y, <3/4]Y, =1/2) = P(Y, <3/4)= [2y,dy, =9/16.
0

@D
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1
527 a. fi(y)=[6(1-y,)dy, =3(1-y,)’,0<y, <J;

Y1

Y2
f(v2) = [6(1-y,)dy, =6y,(1-Y,),0<y, <.
0

1/2 Y,

J6(1-y,)dy,dy,
b. P(Y, <1/2|Y, <3/4)= L0 ~32/63.

3/4

I3(1 -V )2 dy1
0

c. f(y,1y,)=1/y,,0<y, <y, <l

d. f(y,|y)=20-y,)/(1-y,)",0<y, <y, <I.
e. Frompartd, f(y,|1/2)=8(1-Y,),1/2<y, <1. Thus, P(Y, 23/4|Y,=1/2)=1/4.

5.28 Referring to Ex. 5.10:

2
a. First, find f,(y,) = [1dy, =2(1-y,),0<y, <1. Then, P(Y, >.5) = 25.
2y,

b. Firstfind f(y, [Y,)=5755,2Y, <Y, <2. Thus, f(y,[.5)=11<y, <2—the
conditional distribution is uniform on (1, 2). Therefore, P(Y, 21.5]Y, =.5)=.5

5.29 Referring to Ex. 5.11:

1=y,
a. f,(y,)= jldyl =2(1-v,),0<y, <1. Inorder to find fi(y;), notice that the limits of
¥2-1
integration are different for 0 <y; <1 and —1 <y; <0. For the first case:
1=y 1+y,

f.(y)= Ildy2 =1-vy,,for0<y;<1. For the second case, f,(y,)= jldyz =1+y,, for
0 0

—1 <y;<0. This can be writtenas f (y,)=1-]y,|,for-1<y;<1.

b. The conditional distribution is f(y, |Y,) for 0 <y;<1—|yi|. Thus,

__1

I=ly;| 2
3/4

f(y,[1/4)=4/3. Then, P(Y, >1/21]Y, =1/4)= .[4/3dy2 =1/3.

1/2

1/4 1=y, 1/4
530 a. P(Y,>1/2.Y, 31/4)=j jzdyldy2 =3, And, P(Y, <1/4)= j 2(1-y,)dy, = .
0 1/2 0
Thus, P(Y, >21/2|Y, <1/4)=2.
b. Note that f(y, [y,)=+-,0<y, <1-y,. Thus, f(y,|1/4)=4/3,0<y,<3/4.
3/4
Thus, P(Y, >1/2|Y, =1/4)= [4/3dy, = 1/3.

1/2
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1=y
a. f,(y,)= [30y,yjdy, =20y,(1-y,)>, 0<y, <1.
yi-1
b. This marginal density must be constructed in two parts:
1+y2

[30y,y2dy, =15y2(1+y,) —1<y, <0
f,(y,)= 19y2 .
[30y,y2dy, =5y;(1-y,) 0<y,<I
0

c. f(y,|ly)=3y;d-y)>, foryi—1<y,<1-y.
d. f(y,|.75)=2y:i(25)7, for—25<y,<.25,50 P(Y,>0]Y,;=.75) = 5.

2-y,
a f,(y)= [6y}y,dy, =12y;(1-y,),0<y, <I.
Vi
b. This marginal density must be constructed in two parts:

Y2

[6yiv.dy, =2y; o<y, <1
f,(y,) = 2-y, ° .
j6y12y2dy1 :2y2(2_y2)3 1<y, <2
0

c. f(y,ly)=3y,/(1-Yy,)),y, <y, <2-y,.
d. Using

11

the density found in part ¢, P(Y, <1.1|Y, =.6) = %J. y,/.4dy, =.53
.6

Refer to Ex. 5.15:

Y ©
a f(y)=[edy,=ye”, y,20. fy,)=[edy,=e”,y,>0.
0

Y
b. f(y, |y,)=e"y >y,.

C. f(Yz ly)=1/y,,0<y, <y,.
d. The density functions are different.
e. The marginal and conditional probabilities can be different.

a. Given Y; =Y, Y, has a uniform distribution on the interval (0, y;).

b. Since fi(y1))=1,0<y; <1, f(yi,y2) =f(y2 | yOh(y) =1/, 0=y <y, < L.
1

c. f,(y,)= jl/yl dy, =-In(y,),0<y, <I.

Y2

With Y, = 2, the conditional distribution of Y, is uniform on the interval (0, 2). Thus,

P(Y2<1|Y1:2):.5.
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1
536 a. fl(y1)=j(y1+y2)dy2=y1+%,0§y1§1. Similarly f,(y,)=y,+1,0<y,<1.
0

1 1 1
b. First, P(Y, >1) = j(y2 +1)=3 and P(Y, 21,Y, > 1) = j j(y1 +y,)dy,dy, =3.
1/2 1/2 1/2

Thus, P(Y, 21|Y, >1)=2.

c. P(Y, >.75|Y, =.5) =2 = 34375,

5.37 Calculate f,(y,)= I%e_(y“yl)/zdyl =1e™'? y,>0. Thus, Y, has an exponential
0

distribution with =2 and P(Y,>2)=1-F(2) = el

5.38 This is the identical setup as in Ex. 5.34.
a fyLy)=fO2[yofiy)=1/y1,0<y, <y, < 1.

b. Note that f(y | 1/2)=1/2, 0 <y, < 1/2. Thus, P(Y2< 1/4|Y, = 1/2)=1/2.

c. The probability of interest is P(Y; > 1/2 | Y, = 1/4). So, the necessary conditional
density is f(y1 [ Y2) = f(y1, V2)/fa(y2) = 555, 0= Y2 <Y1 < 1. Thus,
1
P(Y; > 1/2|Y, = 1/4) = jmdy1 =1/2.

1/2

5.39 The result follows from:
P(Y, =y, |W =w)= P(Y, =y,,W =w) _ PY, =y,.Y, +Y, =w) _ P, =Y,.Y, =W—y1)_
PW =w) PW =w) PW =w)

Since Y, and Y, are independent, this is

Ae M [, e R
P(Y, =y, |W=w)= P(Y, =y)P(Y, =w-y,) Yi! ( (w=yp)! )

P(\N — W) (}Ll_*_)\lz)we—(llﬁuz)

w!

_ W }\.1 Yi 1_ }\‘1 W=y,
Yi A&, +2, Mk, )

A
A+,

This is the binomial distribution with n=w and p =
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540 As the Ex. 5.39 above, the result follows from:
PEY, =y, [W =w) = PY, =y, ,W =w) _ P(Y, =Y,.Y, +Y, =w) _ P(Y, =v,.Y, :W—yl)_
PW =w) PW =w) PW =w)

Since Y; and Y, are independent, this is (all terms involving p; and p, drop out)

(”1}( : j
PY, =y, (W =w)= PO =YIPG, =w=y,) LY AW=Y, yish

PW =w) [nl+n2J o 0<w-y, <n,’
w

541 LetY =# of defectives in a random selection of three items. Conditioned on p, we have
3
P =vy]| p)=(yjpy(1— P, y=0,12,3.

We are given that the proportion of defectives follows a uniform distribution on (0, 1), so
the unconditional probability that Y = 2 can be found by

P(Y =2)=[P(Y =2,p)dp=[P(Y =2| p)f (p)dp = [3p>(1- p)*"dp =3[ (p* - p*)dp
=1/4.

5.42 (Similar to Ex. 5.41) Let Y =# of defects per yard. Then,
p(y)=[P(Y =y,2)dh = [P(Y = y[ ) F)d = [ 257 dr = (1), y=0,1,2, ...
0 0 0

Note that this is essentially a geometric distribution (see Ex. 3.88).

543  Assume f(y,|y,)=f,(y,). Then, f(y,,y,)=f(y,[Y,)f,(y,)=1f(y))f,(y,) so that
Y, and Y; are independent. Now assume that Y; and Y, are independent. Then, there

exists functions g and h such that f(y,,y,)=9(y,)h(y,) so that

L= [ ] £(y,,y2)dy,dy, = [g(y)dy, x[ h(y,)dy, .
Then, the marginals for Y; and Y, can be defined by
()= 9hy:) 4 90
Jatyndy, x[hey,)dy, — Jaty)ay,
Thus, f(y,,y,)=f,(y,)f,(y,). Now itis clear that
fCy 1y,) =Ty y,)/ f,0,) = fi(y) f,(y,)/ £,(y,) = f,(y),

provided that f,(y,)> 0 as was to be shown.

h(y,)
;50 f,(y,)= .
[hey,)dy,

5.44  The argument follows exactly as Ex. 5.43 with integrals replaced by sums and densities
replaced by probability mass functions.

5.45 No. Counterexample: P(Y; =2,Y,=2)=0£P(Y, =2)P(Y,=2)=(1/9)(1/9).

5.46 No. Counterexample: P(Y; =3,Y,=1)=1/8 #P(Y; =3)P(Y,=1) = (1/8)(4/8).
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5.47

5.48

5.49

5.50

5.51

5.52

5.53

5.54

5.55

5.56

5.57

5.58

5.59

5.60

5.61

Dependent. For example: P(Y; =1, Y, =2)#P(Y; = 1)P(Y,=2).
Dependent. For example: P(Y; =0, Y>=0) #P(Y; =0)P(Y,=0).
Y 1
Note that f,(y,)=[3y,dy, =3y;,0<y, <1, f,(y,)= J'3y1dy1 =3[1-y}],0<y, <I.
0 Y1
Thus, f(y,,y,)# f,(y,)f,(y,) so thatY; and Y, are dependent.
1 1
a. Note that f,(y,)=[1dy, =1,0<y, <1 and f,(y,)=[1dy, =1,0<y, <1. Thus,
0 0
f(y,,y,)=f,(y,)f,(y,) sothatY; and Y, are independent.

b. Yes, the conditional probabilities are the same as the marginal probabilities.

a. Note that fl(yl):J'e‘(y“yz)dy2 =e™,y,>0 and 1:2(y2):_[e‘(y'+y2)dy1 =e,y,>0.
0 0

Thus, f(y,,y,)=f,(y,)f,(y,) sothatY; and Y, are independent.

b. Yes, the conditional probabilities are the same as the marginal probabilities.

Note that f(y,,Y,) can be factored and the ranges of y; and y, do not depend on each
other so by Theorem 5.5 Y; and Y, are independent.

The ranges of y; and y, depend on each other so Y, and Y, cannot be independent.
The ranges of y; and y, depend on each other so Y, and Y, cannot be independent.
The ranges of y; and Yy, depend on each other so Y, and Y, cannot be independent.
The ranges of y; and y, depend on each other so Y, and Y, cannot be independent.
The ranges of y; and y, depend on each other so Y, and Y, cannot be independent.

Following Ex. 5.32, it is seen that f(y,,y,)# f,(y,)f,(y,) sothatY; and Y, are
dependent.

The ranges of y; and Yy, depend on each other so Y, and Y, cannot be independent.

From Ex. 5.36, f,(y,)=y,+3,0<y;<1,and f,(y,)=Yy,+3,0<y,<1. But,
f(y,,y,) = f,(y,)f,(y,) soY;and Y, are dependent.

Note that f(y,,Y,) can be factored and the ranges of y; and y, do not depend on each
other so by Theorem 5.5, Y, and Y, are independent.
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5.65

5.66
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Let X, Y denote the number on which person A, B flips a head on the coin, respectively.
Then, X and Y are geometric random variables and the probability that the stop on the
same number toss is:

P(X=LY =D+P(X =2Y =2)+---=P(X =DPY =D)+P(X =2)P(Y =2)+---

2

=Y P(X =)P(Y =i) =Y p(1-p)" p(1-p)"' = p* Y [(1-p)*] =— .
izl =) k=0 1-(1-p)

o Y| 0 ©

P(Y, >Y,.Y, <2Y,) = [e"™dy,dy, =1 and P(Y, <2Y,)=[ [e™*"dy,dy, =3. So,
0y, /2 0y,/2

P(Y, >Y, |Y, <2Y,)=1/4.
1y 1y,/2

P(Y, >V,.Y, <2Y2):.[ Ildyzdy1 =1, P(Y, <2Y,)=1-P(Y, zzyz)zl_j Ildyzdyl =3,
0y/2 0 0

So, P(Y, >Y, |Y, <2Y,)=1/3.
a. The marginal density for Y, is f,(y,) = J'[(l—oc(l—ze—y] )(1-2e7")]e ™ =dy,
0
— g [J‘e‘yz dy, —o(1-2e7" )_f(e_yz —2e7)dy, }
0 0

e De‘” dy, —a(l-2e7")(1- 1)} =e,
0

which is the exponential density with a mean of 1.
b. By symmetry, the marginal density for Y, is also exponential with = 1.

c. When a =0, then f(y,,y,)=e""" =1 (y,)f,(y,) and so Y; and Y, are independent.
Now, suppose Y; and Y, are independent. Then, E(Y,Y;) = E(Y)E(Y,) =1. So,

E(Y1Y2 ) = J.I YiYs [(1 - Ot(l —2e™n )(1 —De™% )]e_yl_yl dyldyz
00
= vy vy, - O‘D Vi(1-2e7)e™ dylHj y,(1-2¢7)e ¥ dy,
00 0 0

=1-a(l-1)1-1)=1-0a/4. This equals 1 only if &= 0.

a. Since F, () =1, F(y,,»)= Fl(yl)'l'[l_(x{l_ F (Y} {1_1}]: F(y).

b. Similarly, itis F,(y,) from F(y,,Yy,)

c.Ifa=0, F(y,,y,)=F(y,)F,(Y,), so by Definition 5.8 they are independent.

d. Ifa#0, F(y,,y,)# F(y,)F,(Y,), so by Definition 5.8 they are not independent.
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5.67 P(a<Y,<b,c<Y,<d)=F(b,d)-F(b,c)-F(a,d)+F(a,c)
= F,(b)F,(d) - F,(b)F,(c) - F,(a)F,(d) + F,(a)F,(c)
=F,(0)[F,(d)-F,(0)]- F(a)[F,(d)-F,(©)]
=[F, (b)-F ()] [F,(d)-F,(c)]
=P(a<Y, <b)xP(c <Y, <d).

2
; j(.z)yl (8>, y1=0,1,2,and p,(y,)=(3)"(7N)"™",y,=0, 1:

1

5.68 Giventhat p,(y,)= (

2

a. p(Y1,Y,) =Py (Y)P,(Y,) = (y J(-Z)yl (:8)7(3) ()7, y1=0,1,2andy, =0, I.

1

b. The probability of interest is P(Y, +Y, <1)= p(0, 0)+ p(1, 0)+ p(0, 1) = .864.

.69 a. f(ynyz) = f1(Y1)fz(yz) = (1/9)9_(YI+yZ)/3 > Y1 > 0: Y>> 0.

1 1=y,
b. P(Y, +Y, <1)=[ [(1/9)e™" ™ dy,dy, =1-4e"" = .0446.

0 0

5.70  With f(ylayz): fl(yl)fz(yz)zlaOSYIf I,OSY2§ 1:
1/4 Y, 1 Vi
P(Y2<Yi<Ya+ 1) = [ [idy,dy, + [ [idy,dy, =7/32.
0

0 1/4 y,-1/4

5.71  Assume uniform distributions for the call times over the 1-hour period. Then,
a. P(Y, <1/2)Y, £1/2)=P(Y, <1/2P(Y, <1/2)=(1/2)(1/2)=1/4.
b. Note that 5 minutes = 1/12 hour. To find P(]Y, -Y, [£1/12), we must break the
region into three parts in the integration:

1/12 y,+1/12 11/12 y,+1/12 1 1
P(Y, =Y, |<1/12)= [ [idy,dy,+ [ [idy,dy,+ [ [1dy,dy, =23/144.
0 0 1/12 y,-1/12 11/12 y,-1/12

572 a E(Y;)=2(1/3) = 2/3.
b. V(Y1) = 2(1/3)(2/3) = 4/9
c. E(Y; — Y2) = E(Y;) — E(Y2) = 0.

5.73  Use the mean of the hypergeometric: E(Y;) = 3(4)/9 = 4/3.

5.74  The marginal distributions for Y; and Y; are uniform on the interval (0, 1). And it was
found in Ex. 5.50 that Y; and Y; are independent. So:

E(Yi—Y2) =E(Y1) - E(Y2)=0.

E(Y1Y2) = E(YDE(Y2) = (1/2)(1/2) = 1/4.

E(Y:2+ Yo%) = E(YD) + E(Y,Y) = (1/12 + 1/4) + (1/12 + 1/4) = 2/3

V(Y1Y2) = V(Y)V(Y2) = (1/12)(1/12) = 1/144.

oo
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5.75 The marginal distributions for Y, and Y, are exponential with B =1. And it was found in
Ex. 5.51 that Y; and Y; are independent. So:
a. E(Y1+Y)=EY)+EM2)=2,V(Y1+Y2)=V(Y1)+ V(Y2) =2.

b. P(Y,-Y,>3)=P(Y,>3+Y,)=[ [e™dy,dy, =(1/2)e* =.0249.

0 3+y,

c. P(Y, =Y, <-3)=P(Y,>Y,-3)=| [e ™ dy,dy, =(1/2)e" =.0249.
1 2 1 2 2 1
0 3+y,

d. E(Y1—Y2)=E(Y1) - E(Y2) =0, V(Y1 — Y2) = V(Y1) + V(Y1) = 2.

e. They are equal.

5.76  From Ex. 5.52, we found that Y; and Y, are independent. So,

1
a. E(Y,)=[2yldy, =2/3.
0

1
b. E(Y)=[2y/dy, =2/4,50 V(Y,)=2/4-4/9=1/18.
0

C. E(Yi—Y2) =E(Y)) - E(Y,) =0.

5.77 Following Ex. 5.27, the marginal densities can be used:

1 1
a. E(Y1)=j3y1(1—y1)2dy1=1/4, E(Y2)=j6y2(1—y2)dy2=1/2.
0 0
1
b. E(Y*)=[3y,(1-y,)*dy, =1/10, V(Y,)=1/10—(1/4)* =3/80,
0

1
E(Yj):jéyj(l— y,)dy, =3/10, V(Y,)=3/10—(1/2)* =1/20.
0

. E(Yi—3Y2)=E(Y))—3E(Y,) = 1/4-3/2=-5/4,

5.78 a. The marginal distribution for Yy is fi(y;) =y1/2, 0 <y; <2. E(Y;)=4/3, V(Y,) = 2/9.
b. Similarly, fa(y>) = 2(1 —¥,), 0 <y> < 1. So, E(Y,) = 1/3, V(Y;) = 1/18.
C.E(Yi—=Y2)=E(Y)—E(Y2)=4/3-1/3=1.

d. V(Y1 = Y2) = E[(Y1 = Y2)*] = [E(Y1 = Y2)I* = E(Y,?) = 2E(Y,Y2) + E(Y2%) - 1.

1 2
Since E(Y1Y2) = | [y,y,dy,dy, =1/2, we have that
02y,

V(Y1 —Ya) = [2/9 + (4/3)] — 1 + [1/18 + (1/3)"] — 1 = 1/6.

Using Tchebysheftf’s theorem, two standard deviations about the mean is (.19, 1.81).
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5.79

5.80

5.81

5.82

5.83

5.84

5.85

5.86

Referring to Ex. 5.16, integrating the joint density over the two regions of integration:
0 1+y, 1 1=y

E(Yle):J. J-ylyzdyzdyl"'J- J-ylyZdyZdyl =0
-1 o 0 0

From Ex. 5.36, f,(y,)=Yy,+3,0<y;<1,and f,(y,)=Y,+3,0=<y,<1. Thus,
E(Y,)=7/12 and E(Y,) = 7/12. So, E(30Y; + 25Y,) =30(7/12) + 25(7/12) = 32.08.

Since Y, and Y; are independent, E(Y,/Y;) = E(Y2)E(1/Y,). Thus, using the marginal
densities found in Ex. 5.61,

E(Ya/Y1) = E(Y2)E(1/V) = £ [ y,e ™ dy, E [er /zdyl} —2(1)=1.
0 0

The marginal densities were found in Ex. 5.34. So,
1

E(Yi = Y2) = E(Y)) —E(Y2) = 12 [-y, In(y,)dy, =1/2—1/4=1/4.

0

From Ex. 3.88 and 5.42, E(Y)=2-1=1.

All answers use results proven for the geometric distribution and independence:
a. E(Y1))=E(Y2)=1/p, E(Y1—Y2) =E(Y1) —E(Y2) =0.
b. E(Y1") = E(Y2") = (1-p)/p” + (1/p)° = (2 - p)/p’. E(Y1Y2) = E(Y)E(Y2) = 1/p”.
c. E[(Y1—Y2)’]=E(Y%) = 2E(Y,Y2) + E(Y2%) = 2(1 — p)/p*.

V(Y1 = Y2) = V(Y1) + V(Y2) = 2(1 - p)/p”.
d. Use Tchebysheff’s theorem with k = 3.

a. E(Y1) = E(Y2) =1 (both marginal distributions are exponential with mean 1)

b. V(Y1) =V(Yy)) =1

c. E(Y1—Y2)=E(Y)) - E(Yy)=0.

d. E(Y1Y2) =1-a/4, so Cov(Yy, Y2) =— a/4.

e. V(Y1 —Y2) = V(Y1) + V(Y2) — 2Cov(Yy, Y2) = 1 + o/2. Using Tchebysheff’s theorem
with k =2, the interval is (=22 +a/2, 2¥2+0a./2).

Using the hint and Theorem 5.9:
a. E(W)=E@E(Y,"?)=0E(Y,"?)=0. Also, V(W) = E(W?) — [E(W)]* = E(W?).
Now, E(W?) = E(Z)E(Y,") = I-E(Y,") =E(Y,") = vi > 2 (using Ex. 4.82).

b. E(U)=E(YDE(Y,") =325, v2 >2,V(U) = E(U%) - [E(U)]* = E(Y, >E(Y{2>—(v§‘

v2’

7 2v,(vi+v,-2)

viVi +2) e - <v2_z)2 T e 0 V2 >4
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a. E(Yl + Yz) = E(Y]) + E(Yz) =v;+ vy
b. By independence, V(Y1 + Y,) = V(Y1) + V(Y3) = 2v; + 2v,.

It is clear that E(Y) = E(Y;) + E(Y2) + ... + E(Ys). Using the result that Yi follows a
geometric distribution with success probability (7 — i)/6, we have

6
E(Y) = Z% — 14 6/5+6/4+6/3+62+6=147,
i1 /1

Cov(Y1,Y2) = E(Y1Y2) ~ E(YDE(Y2) = 35"y, ¥, P(¥,. ¥,) — [2(1/3)] =219 —4/9 = -2/9.,
i V2
As the value of Y, increases, the value of Y; tends to decrease.

From Ex. 5.3 and 5.21, E(Y,) =4/3 and E(Y;) = 1. Thus,
E(YiY2) = 1) +2(D5+1(2)5 =1
So, Cov(Y1,Y2) =E(Y1Y2) — E(Y)E(Y2) =1—(4/3)(1) =-1/3.

11
From Ex. 5.76, E(Y1) = E(Y2) = 2/3. E(Y1Y2) = [ [4y}y3dy,dy, =4/9. So,
00

Cov(Y1,Y2) = E(Y1Y2) — E(Y1)E(Y2) =4/9 — 4/9 = 0 as expected since Y; and Y, are
independent.

1Y

From Ex. 5.77, E(Y1) = 1/4 and E(Y2) = 1/2. E(YY2) = [ [6y,y,(1-y,)dy,dy, = 3/20.
00

So, Cov(Y1,Y2) =E(Y1Y2) — E(Y1)E(Y2) = 3/20 — 1/8 = 1/40 as expected since Y; and Y, are

dependent.

a. From Ex. 5.55 and 5.79, E(Y,Y;) =0 and E(Y;) = 0. So,
Cov(Y1,Y2) = E(Y1Y2) —E(Y1)E(Y2) = 0—-0E(Y,) = 0.
b. Y, andY; are dependent.
c. Since Cov(Y1, Y2)=0,p=0.
d. If Cov(Yy,Y2) =0, Y, and Y, are not necessarily independent.

a. Cov(U; Ua) =E[(Y1 +Y2)(Y1 = Y2)] —E(Y1 + Y2)E(Y1 —Y>2)
= E(Y/") ~E(Y2) - [E(VD) - [E(YV)T
= (o7 +p7) — (o) +13) = (b —p3) =07 - 0.
=G>

b. Since V(U;) = V(Uy) = o} +o3 (Y, and Y; are uncorrelated), p = 62 2.
G +0;

c. If 612 = G;, U; and U, are uncorrelated.
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5.95

5.96

5.97

5.98

5.99

5.100

5.101

5.102

5.103

5.104

Note that the marginal distributions for Y; and Y, are
yi [-1]0 |1 v, |01
pi(y)) | 1/3 ] 1/3 ] 1/3 Pa(y2) | 2/3 | 1/3

So, Y, and Y; not independent since p(—1, 0) # p1(—=1)p2(0). However, E(Y;) =0 and
E(Y1Y2) = (=1)(0)1/3 + (0)(1)(1/3) + (1)(0)(1/3) = 0, so Cov(Y;,Y2) = 0.

a. Cov(Y1,Y2) = E[(Y1 — p)(Y2— p2)] = E[(Y2— p2)(Y1 — )] = Cov(Y2, Y1).
b. Cov(Y1, Y1) = E[(Y1 — pu)(Y1— p)] = E[(Y1 — m)’] = V(Y)).

a. From Ex. 5.96, Cov(Y;,Yy) =V(Y)) =2.

b. If Cov(Y,Y2) =7, p=7/4> 1, impossible.

c. With p= 1, Cov(Y;,Y2) = 1(4) = 4 (a perfect positive linear association).

d. With p= —1, Cov(Y;,Y2) =—1(4) = —4 (a perfect negative linear association).

Cov(Y,,Y,)

<1I.
WDW )

Since E(c) = ¢, Cov(c, Y) = E[(c — ¢)(Y— )] = 0.

Since p> < 1, we have that -1 <p <1 or—1 <

a. E(Y)=E@2)=0,E(Y,)=E@Z)=1.

b. E(Y,Y,) = E(Z®) = 0 (odd moments are 0).

c. Cov(Y1. Y1) =E(Z’) - EQQE(@ZH) =0.
d.P(Y2>1|Y,>1)=P(Z*>1|Z>1)=1#P(Z*>1). Thus, Y, and Y, are dependent.

a. Cov(Y1,Y2)) =E(Y1Y2) —E(YDE(Y2) =1—-0/4—(1)(1) = —%.

b. This is clear from part a.

c. We showed previously that Y| and Y, are independent only if o = 0. If p =0, if must be
true that a = 0.

The quantity 3Y; + 5Y;, = dollar amount spend per week. Thus:
E(3Y; + 5Y,) = 3(40) + 5(65) = 445.
E(3Y; +5Y2) =9V(Y)) +25V(Y2) =9(4) + 25(8) = 236.

EQY, +4Y, - 6Y3) = 3E(Y)) + 4E(Y2) — 6E(Y3) = 3(2) + 4(-1) — 6(—4) =22,
V(3Y +4Y;, - 6Y3) = 9V(Y)) + 16V(Y2) + 36E(Y3) + 24Cov(Y1, Ya) — 36Cov(Y1, Y3) —
48Cov(Y2, Y3) = 9(4) + 16(6) + 36(8) + 24(1) — 36(—1) — 48(0) = 480.

a. Let X=Y; + Y,. Then, the probability distribution for X is
x | 1| 2 | 3
p(x) | 7/84 | 42/84 | 35/84
Thus, E(X) = 7/3 and V(X) = .3889.

b. E(Y; +Y2)=E(Y)) + E(Y2) =4/3 +1="7/3. We have that V(Y;) = 10/18, V(Y;) = 42/84,
and Cov(Y, Y;)=-1/3, so
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V(Y1 +Y2) =V(Y1) + V(Y2) + 2Cov(Y2, Y3) = 10/18 + 42/84 — 2/3 =7/18 = .3889.
Since Y; and Y, are independent, V(Y; +Y3) = V(Y;) + V(Y;) = 1/18 + 1/18 = 1/9.

V(Y1 —3Y2) = V(Y1) + 9V(Y2) — 6Cov(Y1, Y2) = 3/80 + 9(1/20) — 6(1/40) = 27/80 = .3375.

1

1 1=y,
Since E(Y1) = E(Y2) = 1/3, V(Y1) = V(Y2) = /18 and E(Y\Y2) = [ [2y,y,dy,dy, = 1/12,
0 0

we have that Cov(Y, Y;)=1/12 — 1/9 =—-1/36. Therefore,
E(Y,+Y2)=1/3+1/3=2/3and V(Y; +Y;)=1/18 + 1/18 + 2(-1/36) = 1/18.

From Ex. 5.33, Y, has a gamma distribution with o =2 and B = 1, and Y; has an
exponential distribution with § = 1. Thus, E(Y; + Y3) =2(1) + 1 = 3. Also, since

0 Y
E(YiY2) = [ [y,y,e7dy,dy, =3, Cov(Y1 Y =3-2(1)=1,
00
V(Y = Ya) =201 + 12 =2(1) = 1.

Since a value of 4 minutes is four three standard deviations above the mean of 1 minute,
this is not likely.

We have E(Y;) = E(Y2) = 7/12. Intermediate calculations give V(Y;) = V(Y2) = 11/144.
11

Thus, E(Y;Y,) = j jy1 v, (Y, + ¥, )dy,dy, =1/3, Cov(Y1.Y)) = 1/3 — (7/12)* = —1/144.
00

From Ex. 5.80, E(30Y; + 25Y;) = 32.08, so

V(30Y; + 25Y5) = 900V(Y;) + 625V(Y2) + 2(30)(25) Cov(Y1. Y1) = 106.08.

The standard deviation of 30Y; + 25Y; is +/106.08 = 10.30. Using Tchebysheff’s
theorem with k = 2, the interval is (11.48, 52.68).

a. V(1 +2Y1) =4V(Y1), V(3 +4Y,) = 16V(Y>), and Cov(1 + 2Yy, 3 +4Y,) =8Cov(Y, Y2).
8Cov(Y,.Y,)

S

b. V(1 +2Y;)=4V(Y,), V(3 —4Y;) = 16V(Y>), and Cov(1 + 2Y, 3 — 4Y,) =-8Cov(Yy, Y2).
-8Cov(Y,,Y,)

so. NNy, L

c. V(1 —2Y;) = 4V(Y)), V(3 — 4Y2) = 16V(Y3), and Cov(l — 21, 3 — 4Y,) = 8Cov(Y1, Ya).
8Cov(Y,.Y,)

NN AR
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5.111

5.112

5.113

5.114

5.115

a. V(a+ bY,) = b*V(Y)), V(c + dY,) = d*V(Y>), and Cov(a + bY,, ¢ + dY,) = bdCov(Y, Y).
bdCov(Y,,Y,) bd

\/bZV(Y WAV (Y,) “|bd |

So, py, w, Py,y, - Provided that the constants b and d are

nonzero, % is either 1 or —1. Thus, [py , |=|pyy, |-

b. Yes, the answers agree.

In Ex. 5.61, it was showed that Y, and Y, are independent. In addition, Y, has a gamma
distribution with o =2 and = 2, and Y, has an exponential distribution with § =2. So,
with C =50 + 2Y; + 4Y,, it is clear that

E(C) =50+ 2E(Y,) +4E(Y,) =50+ (2)(4) + (4)(2) = 66

V(C) =4V(Y)) + 16V(Yy) =4(2)(4) + 16(4) = 96.

The net daily gain is given by the random variable G = X — Y. Thus, given the
distributions for X and Y in the problem,

E(G) = E(X) - E(Y) =50 — (4)(2) = 42
V(G) = V(G) + V(G) = 3% + 4(2%) = 25.

The value $70 is (70 — 42)/5 = 7.2 standard deviations above the mean, an unlikely value.

Observe that Y| has a gamma distribution with o =4 and B = 1 and Y; has an exponential
distribution with f =2. Thus, with U =Y, - Y>,

a. EU)=4(1)-2=2

b. V(U)=4(1%)+2°=8

C. The value 0 has a z—score of (0 —2)/ V8 =-.707, or it is —.707 standard deviations
below the mean. This is not extreme so it is likely the profit drops below 0.

Following Ex. 5.88:
a. Note that for non—negative integers aand b and i # |,

P(Yi=a,Yj=b)=P(Yj=b|Yi=a)P(Yi=a)
But, P(Yj=b | Yi=a)=P(Yj=b) since the trials (i.e. die tosses) are independent —

the experiments that generate Y; and Y; represent independent experiments via the
memoryless property. So, Y; and Yj are independent and thus Cov(Y;. Yj) = 0.

b, VIY)=V(Y)) + ... FV(Yg) =0+ L6 4 206 | 3l6 4 a/6 4 _si6_—380Q

(5/6)> ' (4/6)F © (3/6)* ' (2/6)* © (1/6)

c. From Ex. 5.88, E(Y) = 14.7. Using Tchebysheff’s theorem with k = 2, the interval is
14.7£2+/38.99 or (0, 27.188)
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5.116 V(Y;+Y2) =V(Y1) + V(Y2) +2Cov(Y1, Y2), V(Y1 = Y2) = V(Y1) + V(Y1) — 2Cov(Y1, Y2).
When Y, and Y, are independent, Cov(Y, Y2) = 0 so the quantities are the same.

5.117 Refer to Example 5.29 in the text. The situation here is analogous to drawing n balls
from an urn containing N balls, r; of which are red, r, of which are black, and N—r; —r;
are neither red nor black. Using the argument given there, we can deduce that:

E(Y))=np V(Y)=np;(1-p)(¥=2)  where p; =r/N
E(Y,) =np, V(Y2) =npy(1-py)(82)  where p, = /N
Now, define new random variables fori=1, 2, ..., n:
1 if alligatori is a mature female 1 if alligatori is a mature male
T {0 otherwise T {0 otherwise

Then, Y, = ZUi and Y, = ZVi . Now, we must find Cov(Yi, Y;). Note that:
i=1 i=1

E(Y,Y,) = E[iui ,Zn:viJ = iE(uivi)+ZE(uivj).

i=1 i=1 i#]

Now, since for all i, E(U;, Vi) = P(Ui= 1, Vi= 1) = 0 (an alligator can’t be both female
and male), we have that E(U;, Vi) = 0 for all i. Now, fori#],

E(UL V) =P(Ui=1,Vi=1)=P(U; = DP(V; = 1|U; = 1) = L )= p, p, .
Since there are n(n — 1) terms in Z E(U\V,), we have that E(Y1Y2) =n(n— 1) 5 p, P, -

i#]

Thus, Cov(Y1, Y2) =n(n— 1) p, p, — (p)(P2) = =552 Py P, -
So, E[Y#_Y?z]:#(npl_npz) =P =P,

V[ ]= LV (V) 4V ()= 2Cov(Y,.Y,)] = 252 (p, + p, —(p, - p.)°)

5.118 LetY = X; + X,, the total sustained load on the footing.
a. Since X; and X, have gamma distributions and are independent, we have that
E(Y)=50(2) +20(2) = 140
V(Y) = 50(2%) + 20(2%) = 280.

b. Consider Tchebysheff’s theorem with k = 4: the corresponding interval is
140 +4+/280 or (73.07,206.93).

So, we can say that the sustained load will exceed 206.93 kips with probability less
than 1/16.
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5.119

5.120

5.121

5.122

5.123

5.124

5.125

a. Using the multinomial distribution with p; = p, = p3; = 1/3,
P(Y;=3,Y,=1,Y;=2)= 2 (1)° =.0823.

b. E(Y:) =n/3, V(Y1) = n(1/3)(2/3) =2n/9.

c. Cov(Ya, Y3) =-—n(1/3)(1/3) =-—n/9.

d. E(Y2-Y3)=n/3—-n/3=0,V(Y2-Y3)=V(Y2) + V(Y3) — 2Cov(Y>, Y3) = 2n/3.

E(C) =E(Y) + 3E(Y,2) = np; + 3np..
V(C) = V(Yl) + 9V(Y2) + 6COV(Y1, Y2) =np:q; + 9np2q2 — 6np1p2.

If N is large, the multinomial distribution is appropriate:
a P(Yi=2,Y;=1)= 55(37(D'(6)* =.0972.

Efb—x]- - —3-.1=2
-2 Y)+V(Y,)=2Cov(Y,,Y,)| = 2% 4 2% L 7 PP — (72,
Ve b/(l) (Y,) = 2Cov(Y,.Y,)] = 20 4 B 1 2 2

Let Y, = # of mice weighing between 80 and 100 grams, and let Y, = # weighing over 100
grams. Thus, with X having a normal distribution with p =100 g. and 6 =20 g.,
p1=PB0<X<100)=P(-1<Z<0)=.3413
p>=P(X>100)=P(Z>0)=.5
a. P(Y1=2,Y,=1)= 52-(3413)*(.5)'(.1587)' =.1109.

b. P(Y2=4)= 44 (.5)" =.0625.

Let Y, = # of family home fires, Y, = # of apartment fires, and Y; = # of fires in other
types. Thus, (Y1, Y2, Y3) is multinomial with n =4, p; =.73, p, =.2 and p; = .07. Thus,
PY1=2,Y,=1,Y3=1)= 6(.73)2(.2)(.07) = .08953.

Define C = total cost = 20,000Y; + 10,000Y, + 2000Y;
a. E(C)=20,000E(Y;) + 10,000E(Y>) + 2000E(Y3)
=20,000(2.92) + 10,000(.8) + 2000(.28) = 66,960.

b. V(C)=(20,000)*V(Y;) + (10,000)*V(Y>) + (2000)*V(Y3) + covariance terms
= (20,000)*(4)(.73)(.27) + (10,000)*(4)(.8)(.2) + (2000)*(4)(.07)(.93)
+2[20,000(10,000)(—4)(.73)(.2) + 20,000(2000)(—4)(.73)(.07) +
10,000(2000)(—4)(.2)(.07)] = 380,401,600 — 252,192,000 = 128,209,600.

Let Y, =# of planes with no wine cracks, Y, = # of planes with detectable wing cracks,
and Y; = # of planes with critical wing cracks. Therefore, (Y}, Y2, Y3) is multinomial with
n=>5,p;=.7,p,=.25 and p; = .05.

a. P(Y1=2,Y>=2,Y3=1)=30(.7)2(.25)%.05) = .046.

b. The distribution of Y3 is binomial with n =5, p; = .05, so
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P(Y;>1)=1-P(Y;=0)=1-(.95) = .2262.
5.126 Using formulas for means, variances, and covariances for the multinomial:
E(Y)=10(.1)=1 V(Y)) =10(.1)(.9)=.9
E(Y,) =10(.05)=.5 V(Y,) = 10(.05)(.95) = .475
Cov(Y1, Y2) =—10(.1)(.05) =—.05
So,
E(Y:+3Y2)=1+3(.5)=25
V(Y1 +3Y2) =.9+9(475) + 6(-.05) = 4.875.

5.127 Y is binomial withn=10, p=.10 + .05 =.15.
10 5 o
a. PY=2)= 5 (.15)7(.85)" =.2759.
b. PY>1)=1-P(Y=0)=1-(.85)""=.8031.
5.128 The marginal distribution for Y; is found by
Ly = [ Ty, y.)dy, .

Making the change of Variables u=(y1—w)o and V= (Y2 — Ww)/o; yields

f
)= nclwll p’ ‘f { 2(1-

To evaluate this, note that u® +v* —2puv = (v — pu) +u*(1-p*) so that

1 eV .[exp (v—pu)z}dv

1
fl 1=— _—2
W= i & h(l—p)

So, the integral is that of a normal density with mean pu and variance 1 — p*. Therefore,
f =
1Y) 20,

which is a normal density with mean p; and standard deviation ¢;. A similar procedure
will show that the marginal distribution of Y; is normal with mean p, and standard
deviation o;.

(u +v? - 2puv)}dv

(Y1) /262
e Yi—H1) 01’400<y1<00’

5.129 The result follows from Ex. 5.128 and defining f(y, | y,) = f(y,,Y¥,)/ f,(y,), which
yields a density function of a normal distribution with mean p, +p(c,/c,)(y, —u,) and

variance o;(1-p°).

5130 a. Cov(U,,U,)=> > ab,Cov(Y,Y;) =) abV(Y;)=c>> ab;, since the Y;’s are
i=1 i=1

i=1 j=1

independent. If Cov(U,,U,) =0, it must be true that Zaib ; = 0since o> > 0. But, it is

i=1

trivial to see if zaibj =0, Cov(U,,U,) =0. So, U; and U, are orthogonal.

i=1
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5.131

5.132

5.133

5.134

5.135

5.136

5.137

5.138

b. Given in the problem, (U,,U,) has a bivariate normal distribution. Note that
E(UD)=pD a8, E(U)=pd b, V(U)=0c’>a’,and V(Uy) = 6> > b’ . If they are
i=1 i=1 i=1 i=1

orthogonal, Cov(U,,U,) =0 and then p, , =0. So, they are also independent.

a. The joint distribution of Y; and Y5 is simply the product of the marginals f,(y,) and
f,(y,) since they are independent. It is trivial to show that this product of density has
the form of the bivariate normal density with p = 0.

b. Following the result of Ex. 5.130, leta; =a,=b; =1 and b, =—1. Thus, Zaibj =0
i1
so U; and U, are independent.

Following Ex. 5.130 and 5.131, U, is normal with mean p; + p, and variance 26° and U,
is normal with mean p; — p, and variance 267

From Ex. 5.27, f(y,|y,)=1/Y,,0<y;<y,and f,(y,)=6y,(1-y,),0<y,<1.
a. Tofind E(Y, |Y, =Y,), note that the conditional distribution of Y; given Y, is uniform

on the interval (0, y2). So, E(Y, |Y, = y,) = %
b. To find E(E(Y, |Y,)), note that the marginal distribution is beta with o =2 and § = 2.
So, from part a, E(E(Y, |Y,)) = E(Y2/2) = 1/4. This is the same answer as in Ex. 5.77.

The z—score is (6 — 1.25)/4/1.5625 = 3.8, so the value 6 is 3.8 standard deviations above
the mean. This is not likely.

Refer to Ex. 5.41:
a. Since Y is binomial, E(Y|p) = 3p. Now p has a uniform distribution on (0, 1), thus
E(Y) =E[E(Y|p)] = E(3p) = 3(1/2) = 3/2.
b. Following part a, V(Y|p) = 3p(1 — p). Therefore,
V(p) =E[3p(1 —p)] + V(3p) = 3E(p — p*) + 9V(p)
=3E(p) - 3[V(p) + (E(p))’] + 9V(p) = 1.25

a. For a given value of A, Y has a Poisson distribution. Thus, E(Y | A) = A. Since the
marginal distribution of A is exponential with mean 1, E(Y) =E[E(Y |A\)]=EQ) =1.

b. From part a, E(Y | A) =X and so V(Y | ) =A. So, V(Y)=E[V(Y | V)] + E[V(Y |A)] =2

C. The value 9is (9 — 1)/ V2 =5.657 standard deviations above the mean (unlikely score).

Refer to Ex. 5.38: E(Y, |Y, =Y,) =Vyi/2. Fory,=3/4, E(Y,|Y, =3/4) =3/8.

If Y =# of bacteria per cubic centimeter,
a. E(Y)=E)=E[EY|MN]=E®Q)=ap.
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b. V(Y)=E[V(Y | V)] + VIE(Y | V)] = of + o = ap(1+B). Thus, o = Jap(1+p).

5139 a. E(T|N=n)= E(Zn:Yij:Zn:E(Yi):nocB.

b. E(T)=E[E(T |N)]=E(Nap)=rap. Note that this is E(N)E(Y).
5.140 Note that V(Y1) = E[V(Y1 | Y2)] + VIE(Y: | Y2)], so E[V(Y1 | Y2)] = V(Y1) = VIE(Y: | Y2)].
Thus, E[V(Y1 | Y2)] < V(Y)).

5.141 E(Y2)= E(E(Y, |Y,)) = E(V1/2) = %

207

V(Y1) = E[V(Y2 | YD)T+ VIE(Y2 | YD =E[Y2/12]+ V[Y,1/2] = QA)/12 + (A2 =

no

5.142 a. E(Y) = E[E(Y|p)] = E(np) = NE(p) = b

b. V(Y) = E[V(Y | p)] + VIE(Y | p)] = E[np(1 — p)] + V(np) = NE(p — p*) + n*V(p). Now:

~2y_ ho  na(a+l)
PRI @ P e peD)
2 _ n“af
V) (+P) (a+p+1)’
So, V(Y) = no no(a.+1) N n‘af _ naP(a+B+n)

a+f  (a+P)a+B+l)  (a+P)’(a+P+l) (a+P)(a+p+1)

5.143 Consider the random variable y;Y, for the fixed value of Y;. Itis clear that y;Y; has a
normal distribution with mean 0 and variance y; and the mgf for this random variable is

m(t) = E(e¥")=e" /%
Thus, m, (t)=E(eY)=E(@")=E[E@E"" |Y,)]=EE" ?)= | ﬁe(-yf 2ty
Note that this integral is essentially that of a normal density with mean 0 and variance
—= , so the necessary constant that makes the integral equal to 0 is the reciprocal of the

standard deviation. Thus, m; () = (1 —t? )71/2 . Direct calculations give m/,(0) =0 and
m;(0)=1. To compare, note that E(U) = E(Y,Y2) = E(Y1)E(Y2) = 0 and V(U) = E(U?%) =
E(Yi*Y2) = E(Y/)E(Y,) = ()(1) = 1.



116

www.elsolucionario.net

Chapter 5: Multivariate Probability Distributions

Instructor’s Solutions Manual

5.144

5.145

5.146

5.147

5.148

5.149

5.150

E[g(Yl)h(Yz)] = zzg(y1)h(y2)p(y1: yz) :zzg(yl)h(yz)pl(y1)pz(Y2) =

i Y2 i V2

ZQ(Y1)p1(Y1 )zh(yz)pz(yz) =E[g(Y,)]xE[h(Y,)].
y y

The probability of interest is P(Y; + Y, < 30), where Y, is uniform on the interval (0, 15)
and Y, is uniform on the interval (20, 30). Thus, we have

30 30-y2 1
P(Y, +Y, <30) = | j[lsj( jdyldyz 1/3.
20 0

Let (Y1, Y,) represent the coordinates of the landing point of the bomb. Since the radius
is one mile, we have that 0 < y; +y; < 1. Now,

P(target is destroyed) = P(bomb destroys everything within 1/2 of landing point)
This is given by P(Y,”> +Y,” <(4)?). Since (Y1, Y,) are uniformly distributed over the unit
circle, the probability in question is simply the area of a circle with radius 1/2 divided by
the area of the unit circle, or simply 1/4.

Let Y, = arrival time for 1* friend, 0 <y, <1, Y, = arrival time for 2" friend, 0 < Yy, <1.

Thus f(y;, y2) = 1. If friend 2 arrives 1/6 hour (10 minutes) before or after friend 1, they
will meet. We can represent this event as |Y; — Y| < 1/3. To find the probability of this

event, we must find:

1/6 Yy, +1/6 5/6 Yy +1/6
P(Y, -Y, [<1/3)= | j1dy2dyl+j Ildyzdy1+j .[ldyzdyl =11/36.
0 1/6 y,-1/6 5/6 y,-1/6

4 3 2
a. p(ylayz) %’y _0,1,23)’2 071,23y1+Y2<3
3

b. Y, is hypergeometric w/ r =4, N=9, n= 3; Y, is hypergeometric w/ r=3,N=9,n=3

C.P(Yi=11]Y>>1)=[p(1, 1)+ p(1, 2)V/[1 — px(0)] = 9/16

a. f,(y)= I3yldy2—3y1,o<y1<1 fi(y)= j3yldyl 3(1-y5),0<y,<1.

Y2

b. P(Y, <3/4|Y,<1/2)=23/44.

c.fiyi|y2) =2y, (1-y;),y><y1 < 1.
d. P(Y, <3/4|Y,=1/2)=5/12.

a. Note that f(y, | y1) = f(y1, ¥2)/f(y1) = 1/y1, 0 < y, <y;. This is the same conditional
density as seen in Ex. 5.38 and Ex. 5.137. So, E(Y2 | Y1 =Y1)=VY1/2.
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5.152

5.153

5.154

5.155
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1
b. E(Y2) = E[E(Y> | Y1)] = E(Yi/2) = [43y7dy, =3/8.

0
1
c. E(Y2) = [y, 3(1-y})dy, =3/8.
0

a. The joint density is the product of the marginals: f(y,,y,) = B%ef(y#yzw , Y1 =00,y >00

a-y,

b. P(Y, +Y, <a)=[ [Le ™ Pdydy, =1~ [1+a/ple".
0 0

The joint density of (Y1, Ya)is f(y,,y,)=18(y, —y;)y5,0<y;<1,0<y,<1. Thus,

1 1
P(Y1Y2<.5)=P(Y; <.5/Y2) =1 —P(Y; > .5/Y,) = 1 — j j18(yl —y2)y2dy,dy, . Using
5.5y,

straightforward integration, this is equal to (5 — 3In2)/4 = .73014.

This is similar to Ex. 5.139:

a. Let N =+# of eggs laid by the insect and Y = # of eggs that hatch. Given N =n, Y has a
binomial distribution with n trials and success probability p. Thus, E(Y | N=n) =np.
Since N follows as Poisson with parameter A, E(Y) = E[E(Y | N )] = E(Np ) = Ap.

b. V(Y) =E[V(Y [ N)] + VIE(Y | \)] = E[Np(1 — p)] + V[Np] = Ap.

The conditional distribution of Y given p is binomial with parameter p, and note that the
marginal distribution of p 1s beta with oo =3 and B = 2.

1 1 1
a. Note that f(y)=[ f(y,p)=[ f(y| p)f(p)dp=12[;]j p’*?(1- p)"*'dp. This
0 0 0

integral can be evaluated by relating it to a beta density w/ o=y + 3, =n+y+ 2.

Thus,
n _
fy)y=12 " FOZYEDIOES) oy o n
y I'(n+5)

b. Forn=2, E(Y|p)=2p. Thus, E(Y) = E[E(Y|p)] = E(2p) = 2E(p) = 2(3/5) = 6/5.

a. It is easy to show that
Cov(Wi, W5) = Cov(Y; + Y2, Y1 +Y3)
= COV(Yl, Yl) + COV(Y], Y3) + COV(Yz, Y1) + COV(Yz, Y3)
= COV(Yl, Yl) = V(Yl) =2v,.

b. It follows from part a above (i.e. the variance is positive).
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5.156 a. Since E(Z) = E(W) = 0, Cov(Z, W) = E(ZW) = E(Z2Y 2 ) = E(ZH)E(Y "?) = E(Y ?).
This expectation can be found by using the result Ex. 4.112 with a =-1/2. So,

v 1

F,_,
Cov(Z, W) =E(Y ""?)= —22—22 provided v> 1.

J2re)

b. Similar to part a, Cov(Y, W) = E(YW) = E(\/Y W) = E(+Y )E(W) = 0.

C. This is clear from parts (a) and (b) above.

]g }Lym—le—x[(ﬁﬂ)/m i F(y +(X)(%)y+a

o T(y+DI(a)p® Ty + DI (o)™
it was assumed that o was an integer, this can be written as

_(yro=ty B V(LY
p(y)—( y j[ﬁﬂj [B+J’y 0,1,2,....

5.158 Note that for each X;, E(Xj) = p and V(Xi) = pg. Then, E(Y) =XE(X;) =np and V(Y) = npq.
The second result follows from the fact that the X; are independent so therefore all
covariance expressions are 0.

y=0,1,2,.... Since

5.157 p(y) =f pCy [2) f(R)dh =

5.159 For each Wi, E(W;) = 1/p and V(W;) = q/p. Then, E(Y) = ZE(X;) = r/p and V(Y) = rg/p’.
The second result follows from the fact that the W; are independent so therefore all
covariance expressions are 0.

5.160 The marginal probabilities can be written directly:

P(X;=1)=P(select ball 1 or 2) =.5 )=.5
P(X;=1)=P(selectball 1 or3)=.5 PX;=0)=.5
P(X; =1)=P(select ball 1 or 4)=.5 )=.5

Now, for 1 # J, Xj and X; are clearly pairwise independent since, for example,

P(X; = 1, X» = 1) = P(select ball 1) = .25 = P(X; = 1)P(X, = 1)
P(X; = 0, X, = 1) = P(select ball 3) = .25 = P(X; = 0)P(X, = 1)

However, Xi, X, and X3 are not mutually independent since

P(X; =1, X, =1, X3 = 1) = P(select ball 1) = .25 # P(X; = 1)P(X, = )P(X, = 3).
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5161 E(Y —X)=E(Y)-E(X)=1TEY,)~4ZE(X,)=p, -
V(Y = X)=V(Y)+V(X) = LIV(Y)+LTV(X,) =0 /n+ci/m

5.162 Using the result from Ex. 5.65, choose two different values for a with -1 <a < 1.
5.163 a. The distribution functions with the exponential distribution are:

Fly)=1-e",y120;  F(y,)=1-e",y,20.
Then, the joint distribution function is
F(y,y,)=[1-e"]J[1-e " ][1-a(e™)(e™)].

2

Finally, show that F(y,,Y,) gives the joint density function seen in Ex. 5.162.

1 2

b. The distribution functions with the uniform distribution on (0, 1) are:

Fi(y) =y, 0<sy1<1; F(y,) = ¥2,0<y,< 1.
Then, the joint distribution function is

F(ylayz): yly2[1_a(1_yl)(l_y2)]'

02
C.
0y,

F(Y,,Y,) = f(Y,Y,)=1-a[(1-2y,)(1-2y,)],0<y; <1,0<y, < 1.

d. Choose two different values for a with—1 <a <1.

5164 a.Ift,=t,=t;=t, then m(t, t, t) = E(e"*"***)). This, by definition, is the mgf for the
random variable X; + X; + X;.

b. Similarly with t; =t, = tand t; = 0, m(t, t, 0) = E(e"*™*).

c. We prove the continuous case here (the discrete case is similar). Let (X;, Xz, X3) be
continuous random variables with joint density function f(X,,X,,X;). Then,

m(tl,tz,t3):_|' _[ J'e“xletzxze%f(xl,xz,x3)dx1dx2dx3.
Then,
8k1+k2+k3 o 0 ® . kK
Wm(tlatzstS)‘tltzt30 = J- J- J‘Xllxz2 X33 f(X19X27X3)dX1dX2dX3 :

—00 —00 —0

This is easily recognized as E(X Xk xie )

5.165 a. m(tl,tz,t) zzle'xz% tlxl+t2x2+t3X3p x2 3X3

= ZZZXI.XZ.X,(ple“)*l(pze‘Z)XZ(me“)*‘ = (p,e" + p,e® +p,e”)". The

final form follows from the multinomial theorem.
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5.166

5.167

b. The mgf for X; can be found by evaluating m(t, 0, 0). Note thatq=p, +p;=1—ps.

c. Since Cov(X;, X;) = E(X1X2) — E(X))E(X) and E(X;) = np; and E(X;) = np, since X; and

X, have marginal binomial distributions. To find E(X;X;), note that
2

ot at,

m(t,.t, ,0)‘ 4,0 =NMN=D)p, P, .
Thus, Cov(X;, X5) =n(n — 1)pip2 — (Np1)(NP2) = —Np1P2.

The joint probability mass function of (Y, Y», Y3) is given by
GGG L)
Yi AY2 Y y y y
P(Y1, Y2 ¥a) = A = A
n n

where y; + Y, + Y3 =n. The marginal distribution of Y; is hypergeometric with r = Np;, so
E(Y) = npi, V(Y1) = npi(1-p) (=) Similarly, E(Y2) = npa, V(Y2) = npa(1-p2) (=1). 1t
can be shown that (using mathematical expectation and straightforward albeit messy
algebra) E(Y;Y2) = n(n—1)p, p, 7. Using this, it is seen that

Cov(Y1,Y2) = n(n=1)p, p, w5 —(P1)(P) = -npip2 (4h).
(Note the similar expressions in Ex. 5.165.) Finally, it can be found that

_ P, P,
P= \/(l—pl)(l—p»'

a. For this exercise, the quadratic form of interest is
At? + Bt +C = E(Y)t* +[2E(Y,Y,)It+[E(Y,)].
Since E[(tY, — Y2)*] > 0 (it is the integral of a non—negative quantity), so we must have

that At +Bt+C >0. In order to satisfy this inequality, the two roots of this quadratic
must either be imaginary or equal. In terms of the discriminant, we have that

B2 -4AC<0,or
[_2E(Y1Y2 )]2 _4E(Y12)E(Y22) <0.
Thus, [E(Y,Y,)]" <E(Y)E(Y,).

b. Let W = E(Yl), W = E(Yz), and define Z] = Y1 — MU, Zz = Y2 — Wa. Then,

2 _ [ECY, —p)(Y, _Hz)]2 _ [E(lez)]z <1
[E(Yl _Ml)z]E[(Yz _Hz)z] E(Z12)E(Zzz)
by the result in part a.
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6.1

6.2

6.3

6.4

y
The distribution function of Y is F, (y) = J.?_(l ~t)dt=2y-y*,0<y<l.
0

a. R, ()=PU, <u)=PQY -1<u)=P(Y <41 = (4 = 2(4) — (41)’. Thus,
fo,(W=F (W=4", -1<u<l.

b. R (u)=PU,<u)=P(1-2Y <u)=P(Y < = F (B =1-2(%) = (41) . Thus,
fo,(W)=F, (W=4",-1<u<l.

¢ Ry, (W)=PU, <u)=P(Y* <u)=P(Y <Ju) = K (¥u)=2Ju—u Thus,
fo,(W=F (W=4f-1,0<u<l.

d EU,)=-1/3,EU,)=1/3, EU,)=1/6.

e. EQY-1)=-1/3,E(1-2Y)=1/3, E(Y?)=1/6.

y
The distribution function of Y is F, (y) = I(3 [2)tdt =(1/2)(y’ -1),-1<y<1.
-1

a. F, (U=PU, <u)=P@3Y <u)=P(Y <u/3)=F, (u/3)=1(u*/18-1). Thus,
f,, (U)=Fj (uy=u’/18, -3<u<3.

b. F, (W)=PU, <u)=P@3-Y <u)=P(Y 23-u)=1-F,(3-u)=1[1-(3-u)’].
Thus, f, (U)=F; (U=3(3-u)’,2<u<4.

c. Ry (uW=PU,<u)=P(Y><u)=P(-Ju <Y <su)=F Hu)-F (—u)=u".
Thus, f, (u)=F; (U)=3vu,0<u<l.

y’/2  0<y<l1
The distribution function for Yis F, (y)=<y—-1/2 1<y<1.5.

1 y>1.5
a. F,(u)=PU su)=P(10Y -4<u)=P(Y <& =F, (). So,
- —4<u<é6 u _4<u<6
FRu=< 4% 6<u<ll,and fy(u)=FRjUu)=<4& 6<u<ll.
1 ux>1l1 0 elsewhere

b. E(U)=5.583.
c. E(10Y —4)=10(23/24) - 4 = 5.583.

The distribution function of Yis F,(y)=1-e**, 0<y.

a. F,(W=PU<u)=PQ3Y +1<u)=P(Y <&)=F (&) =1-e"“"" Thus,
fLuy=Fu=Le"“""? ux>1.

b. E(U)=13.

121
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6.5 The distribution function of Yis F,(y)=Yy/4,1<y<5.
F,(u)=PU <u)=PQ2Y*+3<u)=P(Y </%)=F, (%) =1,/% . Differentiating,
fu(u)=Fu)=%(52)"?, 5<u<53.

6.6  Refer to Ex. 5.10 ad 5.78. Define F,(u)=PU <u)=P(Y, =Y, <u)=P(Y, <Y, +U).
a. Foru<O0, F,(u)=PU <u)=P(Y, =Y, <u)=0.
u Y,+u
For0<u<1, Ry(u)=PU <u)=P(Y,-Y, <u)=[ [idydy, =u’/2.
0 2y,
2-u 2
For 1<us<2, F(u)=PU <u)=P(Y,-Y,<u)=1- [ [ldy,dy,=1-(2-u)’/2.
0 y,+u
u 0<ux<l
Thus, f,(U)=F/(U)=42-u 1<y<2.
0 elsewhere
b. EU)=1.

6.7  Let Fz(z) and fz(z) denote the standard normal distribution and density functions
respectively.

a. F,(uW)=PU <u)=P(Z?><u)=P(—u<Z <Ju)=F,(u)-F,(-Ju). The
density function for U is then

fy (W) = R () =51 F, (V) + 5= f, (V) =+ f,(Wu), u=0.

Evaluating, we find f, (U) =15 u'?e* u>0.

b. U has a gamma distribution with a = 1/2 and B = 2 (recall that ['(1/2) = Jn ).
c. This is the chi—square distribution with one degree of freedom.

6.8  Let Fy(y) and fy(y) denote the beta distribution and density functions respectively.
a. R W=PU<u=P1-Y<u)=P(Y 21-u)=1-F,(1-u). The density function

for Uis then f,(u)=Fj(u)=f,(1-u)=rSm5u’ ' (1-uw*', 0<u<l.
b. E(U)=1-E(Y)= 1.
c. V(U)=V(Y).

6.9  Note that this is the same density from Ex. 5.12: f(y,,y,)=2,0<y;<1,0<y, <1,
0<y;+y, <1

u-y,;

a F,(u)=PU <u)=P(Y,+Y, <u)=P(Y, <u-Y,)=[ [2dydy, =u’. Thus,
0 0

fo(u)=F/(u)=2u,0<u<l.
b. E(U)=2/3.

C. (found in an earlier exercise in Chapter 5) E(Y; +Y,) = 2/3.
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6.10 Referto Ex. 5.15 and Ex. 5.108.

o U+y,
a. Fy(w=PU<<u)=P(,-Y, <u)=P(Y, <u+Y,) :'[ Ie‘yl dy,dy, =1-e™, so that
0 vy
fo(u)y=F/(u)y=e™,u>0, so that U has an exponential distribution with f = 1.
b. From part a above, E(U) = 1.

6.11 [Itis given that fi(yj)= e ,yi>0fori=1,2. Let U= (Y| +Y,)/2.

2u 2u-y,
a Fy(u)=PU<u)=PCy=<u)=P(Y, <2u-Y,)= [ [e dydy,=1-e -2ue™,
0 v
so that f,(u)=F/(u)=4ue™,u>0,a gamma density with a =2 and p = 1/2.
b. From part (a), E(U)= 1, V(U) = 1/2.

6.12 Let Fy(y) and fy(y) denote the gamma distribution and density functions respectively.
a. F,(u=PU <u)=P(cY <u)=P(Y <u/c). The density function for U is then

fu=FRW=1fU/c)=r5 u“'e™® u>0. Note that this is another

gamma distribution.
b. The shape parameter is the same (o), but the scale parameter is Cp.

6.13 Referto Ex. 5.8;

uu-y,

F,(u)=PU <u)=P(Y, +Y, <u)=P(Y, <u-Y,) =j je*yfyzdyldy2 =l-e“—ue™.
0 0
Thus, f,(u)=F;(u)=ue™,u>0.

6.14 Since Y; and Y, are independent, so f(y,,y,) =18(y, = y;)ys,for 0<y; <1,0<y,<1.
Let U=Y,Y,. Then,

1 1
Fy(u)=PU <u)=P(YY, <u)=P(Y, <u/Y,) = P(Y, >u/Y,) = 1= [ [18(y, - y})y3dy,dy,
u ul’y,
=9u” - 8u’ + 6u’lnu.
f,(W)=FUu)=18u(l-u+ulnu),0<u<l.

6.15 Let U have a uniform distribution on (0, 1). The distribution function for U is
F,(uy=PU <u)=u,0<u<1. Fora function G, we require G(U) =Y where Y has

distribution function Fy(y)=1—e™*",y>0. Note that
Fu(y) =P(Y<y)= P(GU)<y)=PU <G (N]=RI[G(Y]=u.

So it must be true that G™'(y)=1— e’ = u so that G(u) = [-In(1— u)] "% Therefore, the
random variable Y = [-In(U — 1)]71/ ? has distribution function Fy(y).
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6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

y
Similar to Ex. 6.15. The distribution function for Y is F, (y) = bjt‘zdt =1 —%, y>Dh.
b

Fuy) =P(Y<y)= P(GU)<y)=PU <G (N]=RI[G(y]=u.
So it must be true that G™'(y) = 1 -2 =u so that G(u) = 2. Therefore, the random
variable Y = b/(1 — U) has dlstrlbutlon function Fy(y).

a. Taking the derivative of F(y), f(y)=%—,0<y<0.

b. Following Ex. 6.15 and 6.16, let u = (%)q so that y = 0u"®. Thus, the random variable
Y = 0U"® has distribution function Fy(y).

c. From part (b), the transformation is y = 4\/5 . The values are 2.0785, 3.229, 1.5036,
1.5610, 2.403.

a. Taking the derivative of the distribution function yields f(y)=ap*y ™", y>p.

b. Following Ex. 6.15, let u =1~ (5)* so that y = £ Thus, Y =p(1-U)""*.

c. From part (b), y =3/+1—u. The values are 3.0087, 3.3642, 6.2446, 3.4583, 4.7904.

The distribution function for X is:
Fx(X) = P(X <X) = P(I/Y <X) = P(Y > 1/x) = 1 — Fy(1/%)
=1 - [1-(Bx)* |= (Bx)*, 0 <x < B, which is a power distribution with 6 = "

a. F, (W)= PW <w)+P(Y><w)=P(Y <J/w)=F, (w)=+w, 0<w<1.
b. F, (W)=PW <w)+PGHY <w)=PY <w?)=F, W) =w?,0<w<1.

By definition, P(X=1)=P[F(i— 1) <U<F(i)]=F@{)-F@—-1),fori=1, 2, ..., since for
any0<a<Il,P(U<a)=aforany 0 <a<1. FromEx. 4.5, P(Y=1)=F(i) — F(i — 1), for
i=1,2,.... Thus, X and Y have the same distribution.

Let U have a uniform distribution on the interval (0, 1). For a geometric distribution with
parameter p and distribution function F, define the random Variable X as:

X=KkK 1fand only if F(k—1) <U < F(k), k=
Or since F(K) = 1 — g, we have that:

X= klfandonlylfl—q '<U<1-¢", OR

X =k if and only if g, < 1-U < ¢*!, OR

X =k if and only if kinq < In(1-U) < (k-1)Ing, OR

X =k if and only if k—1 < [In(1-U)]/Inq < k.

a.lfU=2Y—-1,then Y=Y, Thus, L =1 and f,(u)=12(1-¥)=1 [ <u<l.
b.IfU=1-2Y,thenY =52, Thus, £ =1 and f,(u)=12(1-54) =1 —1<u<l.
c.IfU=Y* thenY= U . Thus, & =1 and f,(u)=;=2(1-Ju)=L o<u<1.
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6.24 IfU=3Y+1,thenY =% Thus, & =1. With f,(y)=1e"*, we have that
fu (u):§[;e (u- 1)/12]:%e (u- 1)/12, 1<u.

6.25 Referto Ex. 6.11. The variable of interest is U = % Fix Y,=Y,. Then, Y, =2u-Y,

—2U

and dy‘ = 2. The joint density of U and Y, is g(u, y») =2e ", u>0, Yy, >0, and y, < 2u.

2u
Thus, f, (u)= [2edy, = 4ue™ foru=0.
0

6.26  a. Using the transformation approach, Y = U"™ so that & = Ly~™'™ g that the density

-u/a

function for Uis f,(u)==1e ™, u>0. Note that this is the exponential distribution

with mean a.

o

b. E(Y*)=EUY™) = J.uk/m Le™edu = F(ﬁ + l)ock/m , using the result from Ex. 4.111.
0
6.27 a.Let W=+/Y . The random variable Y is exponential so f, (y) = %e’y/ P, Then, Y =W
and & =2w. Then, f,(y)=2we™"", w>0, which is Weibull with m =2,
b. It follows from Ex. 6.26 that E(Y¥?) = (% +1)3*2

6.28 IfY is uniform on the interval (0, 1), f,(u)=1. Then, Y =e™¥/*> and &£ =—-1e™"",
Then, f,(y)=1]|-1e™"? |=1e™?, u >0 which is exponential with mean 2.

6.29 a With W =1V = /2 and | & |=—L_ Then,

f (W) _ a(2w/m) e—zbw/m _ a2 Wl/ze—w/kT w > 0.

2mw 3/2

The above expression is in the form of a gamma density, so the constant a must be

chosen so that the density integrate to 1, or simply
av2 _ 1

3/2 3 3/2 ¢
m T(3)(kT)

So, the density function for W is
fu (W) =

1/2 o—W/KT
ré >(kT>”2 wre

b. For a gamma random variable, E(W) = 3 kT .

6.30 The density function for I is f,(i)=1/2,9<i<11. ForP = 21, 1=+/P/2 and

%:(1/2)3/2 p™2. Then, f,(p) =7 INTE 162 <p<242.
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6.31 Similar to Ex. 6.25. Fix Y; =Y;. Then, U =Y,/y,, Y, =Yy,;U and | 2|=y,. The joint

(1+u)/2

density of Yiand Uis f (y,,u) = +yle " ,¥1>0,u>0. So, the marginal

o0

density for Uis f,(u) = J} yre (W2 dy =2 y>0.

a+uy* > 7 —
0

632 Nowf(y)=1/4, 1 <y<5. IfU=2Y>+3, then Y = (42)"? and | &= +(5Z). Thus,
fy(u)= 5<u<53.

82( 82u23)° " =

633 IfU=5-(Y/2),Y=2(5-U). Thus, |%|=2 and f,(u)=4(80-31u+3u’),45<u<5.

6.34 aIfU=Y’Y=U. Thus, | |=7- and f,(u)=+4e™"*, u>0. This s the

exponential density with mean 6.

b. From part a, E(Y) = E(U"%) = 422 Also, E(Y?) = E(U) = 6, so V(Y) = 0[1 - Z].

6.35 By independence, f(y,,y,)=1,0<y;<0,0<y,<1. LetU=Y,Y,. For a fixed value

of Y aty,, then y, = u/y;. So that %2 = yll So, the joint density of Y, and U is

g(y,u)=1/y,,0<y;<0,0<u<y;.

1
Thus, f, (u)=j(1/ y,)dy, =—In(u),0<u<1.

6.36 By independence, f(y,,y,)= “fa—'zyze_“’lz*yg) ,Y1>0,y,>0. Let U= Y +Y,”. For a fixed

value of Y; at y;, then U = y; +Y,’ so we can write Y, =+/u—Yy; . Then, 2= —— 5o
u-yj

that the joint density of Y; and U is
g(yl,u)— 4ylme—u/e . _922 y,e -u/0 f0r0<y1< \/_

2

m
Then, f,(u)= J.e% y,e™°dy, = e%ue_“/ ®. Thus, U has a gamma distribution with o = 2.

0

6.37 The mass function for the Bernoulli distribution is p(y)= p’(1-p)"~Y,y=0, 1.

1
a. m (H)=E(e")=>e"p(y)=1-p+pe'.

b. m, ®=EE")=]]m, ®)=[1-p+pe']

c. Since the mgf for W is in the form of a binomial mgf with n trials and success
probability p, this is the distribution for W.



www.elsolucionario.net

Chapter 6: Functions of Random Variables 127

6.38

6.39

6.40

6.41

6.42

6.43

6.44

Instructor’s Solutions Manual

Let Y, and Y, have mgfs as given, and let U =a,;Y; + a,Y,. The mdf for U is
m, (t) = E(e™) = E(e™""™=™") = E(e™"™)E(e™™) = m, (a,t)m, (a,1).

The mgf for the exponential distribution with p=11is m(t) = (1-t)™', t <1. Thus, with
Y, and Y, each having this distribution and U = (Y + Y,)/2. Using the result from Ex.
6.38, let a; = a, = 1/2 so the mgf for U is m, (t) = m(t/2)m(t/2) = (1-t/2). Note that
this is the mgf for a gamma random variable with a = 2, § = 1/2, so the density function
forUis f,(u)=4ue™,u>0.

It has been shown that the distribution of both Y,> and Y, is chi-square with v=1. Thus,
both have mgf m(t) = (1-2t)"?,t< 1/2. With U=Y,” +Y.’, use the result from Ex.
6.38 with a; = a, = 1 so that m, (t) = m(t)m(t) = (1-2t)"". Note that this is the mgf for a
exponential random variable with = 2, so the density function for U is

f,(u)y=1e™?, u>0 (this is also the chi-square distribution with v =2.)

(Special case of Theorem 6.3) The mgf for the normal distribution with parameters p and
o is m(t) ="'/ Since the Y;’s are independent, the mgf for U is given by

my (1) = E@€*) = [JE@) = mat) = expjutYa, +(t°6* /2)Y a°].
i=1 i=1
This is the mgf for a normal variable with mean p» @ and variance 6> ) a’.

The probability of interest is P(Y, > Y;) = P(Y,— Y, >0). By Theorem 6.3, the
distribution of Y» — Y; is normal with i = 4000 — 5000 = —1000 and o* = 400* + 300* =

250,000. Thus, P(Y,—Y,;>0)=P(Z> OJ%> )=P(Z>2)=.0228.

a. From Ex. 6.41, Y has a normal distribution with mean p and variance o*/n.

b. For the given values, Y has a normal distribution with variance 6*/n = 16/25. Thus,
the standard deviation is 4/5 so that

PJY -y < 1)=P(-1<Y u<1)=P(-1.25<Z<1.25)=.7888.

c. Similar to the above, the probabilities are .8664, .9544, .9756. So, as the sample size
increases, so does the probability that P(|Y —u| < 1).

The total weight of the watermelons in the packing container is given by U = ZL Y, ,so
by Theorem 6.3 U has a normal distribution with mean 15n and variance 4n. We require
that .05=P(U >140)=P(Z > %). Thus, % = Z0s= 1.645. Solving this

nonlinear expression for n, we see that n = 8.687. Therefore, the maximum number of
watermelons that should be put in the container is 8 (note that with this value n, we have
P(U > 140) =.0002).



128

www.elsolucionario.net

Chapter 6: Functions of Random Variables

Instructor’s Solutions Manual

6.45

6.46

6.47

6.48

6.49

6.50

6.51

6.52

6.53

By Theorem 6.3 we have that U = 100 +7Y; + 3Y, is a normal random variable with mean
w= 100+ 7(10) + 3(4) = 182 and variance 6° = 49(.5)* + 9(.2)* = 12.61. We require a

value ¢ such that P(U>c¢)=P(Z > j%) So, $5 =233 and ¢ = $190.27.

The mgf for W is m,, (t) = E(e") = E(e®"'P") =m, (2t/B) = (1-2t)™*. This is the mgf
for a chi—square variable with n degrees of freedom.

By Ex. 6.46, U = 2Y/4.2 has a chi—square distribution with v="7. So, by Table III,
P(Y >33.627) = P(U>2(33.627)/4.2) = P(U > 16.0128) = .025.

From Ex. 6.40, we know that V =Y,> + Y, has a chi-square distribution with v=2. The
density function for Vis f,(v)=1e™?,v>0. The distribution function of U = W ois
F,(u)=PU <u)=P(V <u’)=F,(u%), so that f,(u)=F/(u)= ue™ >, u>0. A sharp
observer would note that this is a Weibull density with shape parameter 2 and scale 2.

The mgfs for Y and Y, are, respectively, m, (t) =[1-p+ pe']", m, (O=[-p+ pe']™
]nl+n2 .

Since Y, and Y are independent, the mgf for Y, + Y, is m, (t)xm, (t)=[1—p + pe
This is the mgf of a binomial with n; + n, trials and success probability p.

The mgf for Yis m, (t)=[1- p+ pe']". Now, define X =n-Y. The mgf for X is

m, (1) = E(e*)=E(e"" ") =e"m, (-t)=[p+(1- pe']".
This is an mgf for a binomial with n trials and “success” probability (1 — p). Note that the
random variable X = # of failures observed in the experiment.

From Ex. 6.50, the distribution of n, — Y, is binomial with n, trials and “success”
probability 1 — .8 =.2. Thus, by Ex. 6.49, the distribution of Y; + (n, — Y;) is binomial
with n; + n; trials and success probability p = .2.

The mgfs for Y, and Y are, respectively, m, (t) = gl m, (t) = gD

14, )(e'-1)

a. Since Y; and Y are independent, the mgf for Y, + Y, is m, (t)xm, (t) =e“
This is the mgf of a Poisson with mean A; + A;.
b. From Ex. 5.39, the distribution is binomial with m trials and p =

x+x2 :

The mgf for a binomial variable Y; with nj trials and success probability p; is given by
m, () =[1- p, + pe'T". Thus, themgffor U =>""Y, ism,t)=[].[1- p + pe']"

a. Letpj=pandn;=m forall i. Here, U is binomial with m(n) trials and success
probability p.

b. Let pi =p. Here, U is binomial with Zin:l n; trials and success probability p.

C. (Similar to Ex. 5.40) The cond. distribution is hypergeometric w/ r =n;, N = Z n .
d. By definition,
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P(Y+Yy=k, Y Yi=m-k) _ P(Y+,=K)P(Y Yi=m—k)
P(ZYi=m) a P(ZY;=m)

n _ P(Y,4Y,=k XY,=m) _
P(Yl +Y2 =k | zizlYi) - l;(zzv,:m) =

M

= ————, which is hypergeometric with r = n; + n.

=

e. No, the mgf for U does not simplify into a recognizable form.

a. The mgf for U = Zin:l Y, is m,(t) = D , which is recognized as the mgf for a
Poisson w/ mean Zi A

b. This is similar to 6.52. The distribution is binomial with m trials and p = %

c. Following the same steps as in part d of Ex. 6.53, it is easily shown that the conditional

1 ‘*’kz

distribution is binomial with m trials and success probability S

LetY=Y; + Y, Then, by Ex. 6.52, Y is Poisson with mean 7 + 7 = 14. Thus,
P(Y>20)=1-P(Y<19)=.077.

Let U = total service time for two cars. Similar to Ex. 6.13, U has a gamma distribution

with a =2, p=1/2. Then, P(U>1.5)= j4ue-2“du = .1991.
1.5

For each Yj, the mgf'is my (t) = (1-Bt)™, t<1/B. Since the Y; are independent, the mgf

forU=>%"Yism®=[Ja-pH™ =(1- Bt) 2o

This is the mgf for the gamma with shape parameter zinzl o, and scale parameter f3.

@

a. The mgf for each W; is m(t) =

© qe) The mgf for Y is [m(t)]" —( ) which is the

mgf for the negative binomial distribution.

b. Differentiating with respect to t, we have
r—1 t
M) = 2] <2 |, =5 ~E)

(1-ge")
Taking another derivative with respect to t yields

r+l .2 ot

" _ (1-ge")™"r’ pe' (pe)" —r(pe")" (r+1)(-ge")(1-ge')"
m (t)|t =0 — (1-ge )2('”) |t:O

— pr2+rp(2r+1)q _ E(YZ)

Thus, V(Y) = E(Y?) — [E(Y)]* = rg/p>.
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c. This is similar to Ex. 6.53. By definition,

m—k-1
P(W, =k, SW,=m) __ P(lek:Z::ZWi:m—k) _ P(lek)P(ZLZWi:m_k) _ ( r-2 J

PW, =k[ZW;) = PEIW=m) P(XW;=m) B P(XW;=m) - [m—lj )

r-1

6.59  The mgfs for Y; and Y are, respectively, m, (t)=(1-2t)™"*, m, (t) =(1-2t)™*">. Thus
the mgf for U=Y,; + Y, =my(t) =m, (t)xm, (t) =(1- 2t) 2’2 which is the mgf for a

chi—square variable with v; + v, degrees of freedom.

6.60 Note that since Y; and Y are independent, my(t) =m, (t) xm, (t). Therefore, it must be
so that mw(t)/ my (t) =m, (t). Given the mgfs for W and Y;, we can solve for m, (t):

:ﬂz _ —(v=v1)/2
my, (t) 120" (1-2t) .

This is the mgf for a chi—squared variable with v — v, degrees of freedom.

6.61 Similar to Ex. 6.60. Since Y, and Y> are independent, mw(t) =m, (t) xm, (t). Therefore,
it must be so that mw(t)/ m, (t) =m, (t). Given the mgfs for W and Y,

re'-1)
e RSN )

my, (t) :W—e

This is the mgf for a Poisson variable with mean A — ;.

6.62 E{exp[t, (Y, +Y,) +t,(Y, =Y,)]} = E{exp[(t, +,)Y, +(t, +1,)Y, ]} = my, (t, +t2)mY2 (t, +t,)
= exp[< (t, +1,)* Jexp[S(t, —t,)*1=exp[<t," Jexp[t, T’

= m, (t)m, (t,).
Since the joint mgf factors, U; and U, are independent.

6.63  a. The marginal distribution for Uy is f, (u,) = J‘B%uze*“mduz: 1,0<u;<1l.
0
1

b. The marginal distribution for U, is f,, (u,)= J.B%uze‘”z/ﬁdul :B%uze_uz/B , Uy >0. This
0
is a gamma density with a = 2 and scale parameter .

C. Since the joint distribution factors into the product of the two marginal densities, they
are independent.

6.64 a. By independence, the joint distribution of Y, and Y, is the product of the two marginal
densities:

_ I )
f(y,Y,) =ty y e Py > 0,y, > 0.

" T(a)M(ay)B
With U and V as defined, we have that y; = u;u; and y, = Uy(1-U;). Thus, the Jacobian of
transformation J = U, (see Example 6.14). Thus, the joint density of U; and U, is
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- 1 U,/
F QUL U) = e WU U, (- )T e Pu,

_ 1 a;-1 ap—l, ap+oy—l —u, /B :
—Wull (1—U1)2 u, " e , with 0 <u; <1, and u, > 0.

_ -1 -1 1 +ay=l =V/B gy, . T(oyta,) -1 -1
b. fy, (U) = oy U (1= )™ [y e Py = ey (1 - uy )™, with
0

0 <u; <1. This is the beta density as defined.

AR (g tay) 2 ’

1
_ oytop =1 —u, /B a, -1 o,-1 _ o+, =1 —u, /B
c. fu, () =zt U, e J'—F(al)‘r(%) U (I =u)™ duy = o e
0
with U, > 0. This is the gamma density as defined.
d. Since the joint distribution factors into the product of the two marginal densities, they

are independent.

a. By independence, the joint distribution of Z; and Z; is the product of the two marginal
densities:

1 A (422
f(z,2,)=5e"""2"",

With U; = Z; and U, = Z; + Z,, we have that z; = u; and z, = U, — U;. Thus, the Jacobian
of transformation is

Thus, the joint density of U; and U is
2 2 2 2
f(ul’uz) =ie*[u1 +HUp = )* 12 _ ie—(Zul —2uu,+u3)/2 .

b. E(Ul): E(Z1) =0, E(Uz): E(Z1 +Zz):09V(U1):V(Z1):L
V(Uz) :V(Z1 +Zz):V(Zl)+V(Zz):2a COV(UpUz): E(Z12) =1

c. Not independent since p # 0.

d. This is the bivariate normal distribution with p; =, =0, o; =1, 63 =2, and p = +-

a. Similar to Ex. 6.65, we have that y; = U; — U; and Yy, = Uy. So, the Jacobian of
transformation is

Thus, by definition the joint density is as given.

b. By definition of a marginal density, the marginal density for U, is as given.
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6.67

6.68

6.69

c. If Y, and Y, are independent, their joint density factors into the product of the marginal
densities, so we have the given form.

a. We have that y; = u;U, and y, = U;. So, the Jacobian of transformation is
u2 ul
0

J= =|u,|.

Thus, by definition the joint density is as given.
b. By definition of a marginal density, the marginal density for U, is as given.
c. If Y, and Y, are independent, their joint density factors into the product of the marginal

densities, so we have the given form.

a. Using the result from Ex. 6.67,
f(u,,u,)=8(uu)uu, =8uu),0<u;<1,0<u,<1.

b. The marginal density for U is
fy (u) = J1'8u1u§du2 =20,,0<u; <1.
The marginal density for U, is 0
fy,(u,) = j.8u1u§dul =4u;,0<u < 1.
0

The joint density factors into the product of the marginal densities, thus independence.

a. The joint density is f(y,y,) =, y1>1,y2> 1.

b. We have that y; = u;u; and y, = Uy(1 — U;). The Jacobian of transformation is U,. So,
f(u,u,)=

with limits as specified in the problem.

1
ufu3 (1-u, )? 2

C. The limits may be simplified to: 1/u; <up, 0 <u; < 1/2, or 1/(1-U;) < Uy, 172<u; < 1.

d. 170 <uy < 172, then f,, (u) = [ gmsdu, =57t
1/y

- 1 -1
Ifl/ZSUlSl,then fUI(ul)_ J‘mduz =
1/(1=u;)
e. Not independent since the joint density does not factor. Also note that the support is

not rectangular.
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a. Since Y; and Y, are independent, their joint density is f(y,,y,)=1. The inverse

— U

transformations are y, =“3% and y, =-5=. Thus the Jacobian is

1
J= 21 =7, so that

2
f(u,,u,) =%, with limits as specified in the problem.

D= =

b. The support is in the shape of a square with corners located (0, 0), (1, 1), (2, 0), (1, —1).

¢. If0<u; <1, then f, ()= j%du2 =Uu,.
2y
If1<u;<2,then fy (u)= [3du, =2-u,.
u -2
2+u,
d. If-1 <u, <0, then f, (u,)= j%du2 =1+u,.
J'%du2 =1-u,.

U,

If0<u,<1,then f, (u,)=

a. The joint density of Y; and Y, is f(y,,y,)= ﬁ%e’(y‘m)/ﬁ . The inverse transformations

_ U U 1 1
are Y, =i and y, = T and the Jacobian is
) Y
J= I+ (14u)?| |y
L U] (14uy)?

Uy (14u,)?
So, the joint density of U; and U, is
f(ulauz) = BLze_UI/B »

(14u,)% ?

u; >0, u,>0.

b. Yes, U; and U, are independent since the joint density factors and the support is
rectangular (Theorem 5.5).

Since the distribution function is F(y) =y for 0 <y <1,
a. g,UuW=2(1-u),0<u=<l.
b. Since the above is a beta density with a =1 and p =2, E(U;) =1/3, V(U;) = 1/18.

Following Ex. 6.72,
a. g, W=2u,0<u<l.

b. Since the above is a beta density with a =2 and p =1, E(U,) =2/3, V(U;,) = 1/18.

6.74  Since the distribution function is F(y) =y/0 for 0 <y <0,

a. G(n>(Y)=(y/9)”,OSy§6.
b. g(m(y):G{n)(y):ny”‘l/e”,0§y§e_
c. Itis easily shown that E(Y() = -5 0, V(Yn) = —2

n+1 (n+1)’(n+2) *
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6.75

6.76

6.77

6.78

6.79

Following Ex. 6.74, the required probability is P(Yn) < 10) = (10/ 15)° = .1317.

Following Ex. 6.74 with f(y) =1/6 for 0 <y <0,
' k-1 (g_y \N-K n k=1 -k
a. By Theorem 6.5, 9o (¥) = m(%) (e_ey) T = (k=Di(n—=K)! L0 0< y<6.

o"

0 6
. ' 0—y)" K 2 K n—-k .
b. ENw)= (kfl)’!‘('nfk)!J. YON gy = O (s (y) (l - %) dy. To evaluate this

0 0

integral, apply the transformation z = ¥ and relate the resulting integral to that of a
beta density witha =k + 1 and p=n—k+ 1. Thus, E(Yy)= %6

. Using the same techniques in part b above, it can be shown that E(Y(ﬁ)) = % 0’

-k+1)k 2
so that V(Yg) = (g 0

d. ENw—Yu1) =ENw) —ENw1) = 50— £16 = -1;0. Note that this is constant for

n+l1

all k, so that the expected order statistics are equally spaced.

a. Using Theorem 6.5, the joint density of Y and Y is given by
n! i k j 1= A 2
0 VYo = i () B =3 =)@ 0 <y = e

b. Cov(Y, Yi) = E(YYw) — E(Y§)E(Yw). The expectations E(Yj)) and E(Y ) were
derived in Ex. 6.76. To find E(Y;Y«), let U =Yy;/0 and v = y/0 and write

1v
E(YyYw) = cO _fjuj(v —uw)* v -v)"*dudv,
00

n!

(G-DI(k=1=)i(n—k)! *

ce{juk”(l - u)”‘kdu}[_[wj(l —w)< dw} =c0’[B(k +2,n—k +D[B(j+1,k - j)].

where ¢ = Now, let w = u/v so u=wv and du = vdw. Then, the integral is

_(k+D)j 2 . — _(k+Dj 2 2 _ —k+1 2
Slmphfylng’ this is (n+)(n+2) 6°. Thus’ COV(YU)’ Y(k)) T (n+D(n+2) 6" (n+1) 6" = (n+r1)2(;+2) 0.

C. V(¥ — Y)) = V(Y) + V(Y() = 2Cov(Y ), Yi)
(nk+Dk 2 4 (=jeDj a2 _2n—k+) a2 (k=j)(n-k+kiD) 02
(n+1)*(n+2) (n+1)*(n+2) (n+1)*(n+2) (n+1)*(n+2)

From Ex. 6.76 with 0 = 1, g, (¥) = gy Y (1= ¥)™™ = 12 sy (1 - y)™™
Since 0 <y < 1, this is the beta density as described.

The joint density of Yy and Y is given by (see Ex. 6.77 with j = 1, k=n),

G (1 ¥o) =0 = D% = 2T () =n(n=D(E)' (¥, — )", 0 <Y1 <yn <6.
Applying the transformation U = Y1/Y) and V = Y(,), we have that y; = uv, y, =V and the
Jacobian of transformation is v. Thus,

fu,v)=n(n-DE)(v-u)2v=nn-DE)d-uw)"v"",0<u<1,0<v<0.
Since this joint density factors into separate functions of U and v and the support is
rectangular, thus Y)/Yn and V = Y, are independent.
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The density and distribution function for Y are f(y)=6y(1-y)and F(y)=3y> -2y°,
respectively, for 0 <y <1.

G (¥)=By* —2y*), 0<y<1.

’ n-1 n-1
0 (¥) =Gl () =n(3y* =2y ) 6y —6y*) = 6ny(1 - y)By* —2y* ], 0=y < 1.
c. Using the above density with n = 2, it is found that E(Y ,))=.6286.

T &

a. With f(y)=4e”" and F(y)=1-¢"",y>0:

yp _
9y (Y) = n[e y/ﬁ]n re y/B =5e VPy=0.

This is the exponential density with mean f/n.
b. With n =5, § =2, Y(;) has and exponential distribution with mean .4. Thus

P(Y)<3.6)=1—e” =.99988.

Note that the distribution function for the largest order statistic is
G =[FI =[1-e"],y=0.
It is easily shown that the median m is given by m= ¢, = fIn2. Now,
P(Yim>m)=1-P(Ym<m)=1- [F@n2)] =1-(5)"

Since F(M) = P(Y <m) =5, P(Y(m > M) =1 —P(Yoy <m) =1 = G, (M) = 1 - (.5)". So,

the answer holds regardless of the continuous distribution.

The distribution function for the Weibull is F(y)=1- e Ve, y > 0. Thus, the
distribution function for Y(;), the smallest order statistic, is given by
Gy (N =1-[-F(yF =1-" ] =1 y=0,

This is the Weibull distribution function with shape parameter m and scale parameter a/n.

Using Theorem 6.5, the joint density of Y(;y and Y(») is given by
g(l)(z)(yp Y,)=2,0<y1<y,< 1.

1/2 1
Thus, P2Y1) <Y@) = I _[ 2dy,dy, =.5.

0 2y

Using Theorem 6.5 with f(y)=4e™" and F(y)=1-e7",y>0:
| _ k—1( _ n—k e VB n! _ kK-1( _ n—k+1
a9 (y) =i (e @) et = et (- ) e ) sy 20,

_ ! -Yi/B i1 -y;/B —Y /P _l_j( -y, /ﬁ)n—kﬂ —y. /B
b. guxk)(vpyk)—m(l—e ") (e e e e,

OSyJSyk<OO
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6.87  For this problem, we need the distribution of Y(;) (similar to Ex. 6.72). The distribution
function of Y is

y
F(y)=P(Y <y)=[(1/2)e™ > dy =1-e" >0 y>4,
4
a. gu(y)= Z[e—(1/2)<y—4>]1 1o /0 g y> g,

b. E(Ya) =5.
6.88 This is somewhat of a generalization of Ex. 6.87. The distribution function of Y is

y
F(y)=P(Y <y)=[e™dy=1-e" ,y>0.
0

a9y =nle 0 e < neo 1y >,
b. E(Y(])) = % +0.

6.89 Theorem 6.5 gives the joint density of Y(i) and Y, is given by (also see Ex. 6.79)
g(l)(n)(yp yn) =n(n- 1)(yn - yl)n—z, 0<yi<yn<1.
Using the method of transformations, let R = Yn — Y1y and S=Y(;). The inverse
transformations are y; = S and y, = r + S and Jacobian of transformation is 1. Thus, the
joint density of R and S is given by
f(r,s)=n(n=1)(r+s—s)">=n(n-Hr"?,0<s<1-r<l.

(Note that since r =y, — Yy, r <1 -y, or equivalently r <1 —sand thens<1-r).
The marginal density of R is then

1-r
fo(r) = .fn(n —Dr"2ds=n(n-Dr"*(1-r),0<r<1.
0

FYI, this is a beta density witha=n—1 and B = 2.

6.90 Since the points on the interval (0, t) at which the calls occur are uniformly distributed,
we have that F(w) =w/t, 0 <w <t.
a. The distribution of W) is G, (W) = [FW)]* =w*/t*, 0<w<t ThusP(W@g<1)=

G, () =1/16.

2 2
b. Witht=2, EW,,) = [4w' /2 dw=[w*/4dw =16.
0 0

6.91 With the exponential distribution with mean 0, we have f(y)=4e™"?, F(y)=1-¢"",

fory>0.
a. Using Theorem 6.5, the joint distribution of order statistics W) and Wj_ is given by
, —wi /0 Y2 —w;/0 Y- —(W;_,+W;)/0
950 Wi W) = Gty (1 —e” ) (e ' ) é(e o ) 0 < Wjy <wWj<co.
Define the random variables S = Wj_), Tj = W, — W(j_1). The inverse transformations
are Wj_; = S and w; = t; + s and Jacobian of transformation is 1. Thus, the joint density
of S and Tjis given by
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—s/0 (t;+s)/0 |~ i —(25+t;)/0
f(s.t)) = G w(l e’ ) (e ) 912(6 ' )

n! —(n=j+D)t; /8 4 ( _5/9)1—2( —(n—j+2)s/e) .
=G € 1-e e ,$>0,>0.

The marginal density of Tjis then

T o \i2( _in_i
f (t )= - 2)‘(n e ~(n-j+Dt; ﬁzj(l_e 5/9) (e (n ]+2)S/9).js'

0

Employ the change of variables u =e™*'® and the above integral becomes the integral

of a scaled beta density. Evaluating this, the marginal density becomes
o (t)) = L N

This is the density of an exponential distribution with mean 6/(n — j+1).
b. Observe that
JZr;(n —j+ DT; =nW, + (n =W, -W) +(n=2)(\W; -W,) +...+(n—r+HW, =W, )
=W +Wo+ AW+ (=1 + DHW, = erzle +(h—NW. =U. .
Hence, E(U,) = erzl(n —r+1)E(T;)=r0.

By Theorem 6.3, U will have a normal distribution with mean (1/2)(n— 3p) =— p and
variance (1/4)(c” + 90%) = 2.50".

By independence, the joint distribution of l and Ris f(i,r)=2r,0<i<land0<r<I.
To find the density for W, fix R=r. Then, W= I’r so | = W /1 and |§—V'v =L (%) for
the range 0 <w <r<1. Thus, f(w,r)=+r/w and

f(w)=j’x/r/_wdr=%(ﬁ—w),osws I

Note that Y; and Y; have identical gamma distributions with a =2, B =2. The mgf'is
m(t) = (1-2t)7>,t<1/2.
The mgf for U= (Y; +Y,)/2 is
m, (t) = E(e") = E"™*) =mt/2)mt/2)=(1-t)".
This is the mgf for a gamma distribution with oo =4 and B = 1, so that is the distribution
of U.

By independence, f(y,,y,)=1,0<y;<0,0<y,<1.

a. Consider the joint distribution of U; = Y;/Y, and V =Y,. Fixing V at v, we can write
U;=Y/v. Then, Y; =vU, and dy‘ =V. The joint density of U; and V is g(u,v)=V.
The ranges of U and v are as follows:
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6.96

6.97

o ify;<y;,thenO0<u<landO<v<lI
e ify;>Y,, then U has a minimum value of 1 and a maximum at 1/y, = 1/v.
Similarly, 0 <v<1

So, the marginal distribution of U; is given by

1

jvdv =1 0<u<l
0

ful ()=

1/u

— 1
J'vdv_2uz u>1
0

b. Consider the joint distribution of U, =—In(Y,Y;) and V =Y. Fixing V atv, we can
write U = —In(vY,). Then, Y= ¢e™"> /v and %2 =—e " /Vv. The joint density of U,

and Vis g(u,v) =—e" /v, with—Inv<u<oand 0 <v<1. Or, written another way,
e'<v<I

So, the marginal distribution of U, is given by
1

fUz(u) = _[—e‘” /vdv =ue™,0<u.

er

c. Same as Ex. 6.35.

Note that P(Y; > Y,) =P(Y; — Y>> 0). By Theorem 6.3, Y| — Y, has a normal distribution
with mean 5 — 4 =1 and variance 1 + 3 =4. Thus,
P(Y1—=Y,>0)=P(Z>-1/2)=.6915.

The probability mass functions for Y; and Y, are:

yo | 0 [ 1 [ 2] 3 | 4 y | o[ 1] 213

pi(y1) | 4096 | 4096 | .1536 | .0256 | .0016  pa(y2) | .125 | 375 | 375 | .125

Note that W =Y + Y, is a random variable with support (0, 1, 2, 3, 4, 5, 6, 7). Using the
hint given in the problem, the mass function for W is given by

p(w)

P1(0)p2(0) = .4096(.125) = .0512

D,(0)po(1) + py(D)p»(0) = .4096(.375) + .4096(.125) = .2048

01(0)p2(2) + py(2)px(0) + p(1)p(1) = .4096(.375) + .1536(.125) + .4096(.375) = .3264

wN|—|o|s

P1(0)P2(3) + P1(3)P2(0) + pi(1)P2(2) + Pi(2)pa(1) = .4096(.125) +.0256(.125) +.4096(.375)
+.1536(.375) = .2656

4 | p(Dp3) + Pi3)pa(D) + Pr2)pa(2) + pr(@)pa(0) = .4096(.125) + .0256(.375) + .1536(.375)
+.0016(.125) = .1186

(V)]

P1(2)P2(3) + Pi3)Pa(2) + pi(A)px(1) = .1536(.125) + .0256(.375) + .0016(.375) = .0294

=)}

DL(A)P2(2) + pi(3)px(3) = .0016(.375) + .0256(.125) = .0038

7 | pi@)pa(3) = .0016(.125) = .0002

Check: .0512 +.2048 + .3264 + .2656 + .1186 + .0294 + .0038 + .0002 = 1.
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The joint distribution of Yy and Yy is f(y,,y,)=e " y;>0,y,>0. Let U, = o,

U, =Y,. The inverse transformations are y; = U;U,/(1 — U;) and Yy, = U, so the Jacobian of
transformation is

Uy Uy

(1-u;)? I-u | —
0 1
Thus, the joint distribution of U; and U, is

f(Ul,U y=¢e" [uu, /(1= +u, ] (1uj) =g lw/0-u) (1uj) L0<u <1,u,>0.
1

Therefore, the marginal distribution for U, is

)

J= (ou)?

fU1 (ul) — J‘e—[uﬂ(l—ul) (l_uﬁdu2 =1,0<su <1,
0
Note that the integrand is a gamma density function witha =1, =1 —u;.
This is a special case of Example 6.14 and Ex. 6.63.

Recall that by Ex. 6 81, Y1) is exponential with mean 15/5 = 3.
a. PYpH>9)= e
b. P(Y(1)< 12)— 1 —e

If we let (A, B) = (-1, 1) and T = 0, the density function for X, the landing point is
f(x)=1/2,-1<x<1.
We must find the distribution of U = |X|. Therefore,
Fuu)=PU<Suw=P(X|fu)=P(-usXsu)=[u—-(—uj2=u.

So, fu(u) =F'y(u)=1, 0 <u < 1. Therefore, U has a uniform distribution on (0, 1).

Define Y; = point chosen for sentry 1 and Y, = point chosen for sentry 2. Both points are

chosen along a one—mile stretch of highway, so assuming independent uniform

distributions on (0, 1), the joint distribution for Y, and Y; is
f(y,y,)=1,0sy1<1L,0<y,<1.

The probability of interest is P(]Y; — Y2 | < 1). This is most easily solved using geometric

considerations (similar to material in Chapter 5): P([Y; — Y, | < 1) = .75 (this can easily

be found by considering the complement of the event).

The joint distribution of Y, and Y, is f (y,, y,) = =& ¥ /2

transformations U; = Y,/Y; and U, = Y,. With y; = u;U; and Yy, = |U,|, the Jacobian of
transformation is U so that the j oint density of U and U, is

. Considering the

2 2
f(u,u,)= (TSt (A W Y P U T T
The marginal density of U; is
— |4 —{u3 (1+u7)]/2 (1 w2 (Y2
fUl(ul)_J.ﬁuAe o duz_,[FUze 2 du,
bt .

Using the change of variables v = U] so that du, = 577 dv gives the integral
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n(1+u),oo<u1<oo

f (u) J'ZL v(1+u|)/2d _
0

The last expression above comes from noting the integrand is related an exponential
density with mean 2/(1+u’). The distribution of U; is called the Cauchy distribution.

6.104 a. The event {Y; =Y} occurs if
{(Yi=1,Y2=1),Y1=2,Y2=2),(Y1=3,Y2=3), ...}
So, since the probablhty mass function for the geometric is given by p(y) =p(1 —p)’ ',
we can find the probability of this event by

P(Yi=Y2)=p(1)> +p2)’ +pB3) ...= p*+ p*(1-p)* + p’(A— p)* +...

= 2 p’ p
=p ) (1-p)’ = = :
JZ_(; 1-(1-p?* 2-p

b. Similar to part a, the event {Y, —Y,=1} = {Y,; =Y, + 1} occurs if
{(Vi=2,Y2=1),(¥1=3,Y2=2),(Y1=4,Y2=3), ...}
Thus,

P(Yi—Y2=1)=p(2) p(1) +p(3) p(2) + p(4) p3) +
PP P =
. Define U =Y, —Y,. To find py(u) = P(U = u), assume first that u > 0. Thus,
PU=u=P{,-Y,=u)= ZP(Y =U+Y,)P(Y, =Yy,)= Z p-p)** " p1-p)*"

Y= Y=
“p- P X = P pr Ry = PO
If u <0, proceed similarly with y, =y; — U to obtain P(U =u) = p(lz——p) . These two
. . oy pA=p)
results can be combined to yield p,(u)=PU =u) = ,u=0,+1,+£2, ...

6.105 The inverse transformation isy = 1/u— 1. Then,
fiy (U) = gk (52 U™ L = iUt (1w, 0<u< 1.
This is the beta distribution with parameters 3 and a.

6.106 Recall that the distribution function for a continuous random variable is monotonic
increasing and returns values on [0, 1]. Thus, the random variable U = F(Y) has support
on (0, 1) and has distribution function

F,(u)=PU <u)=P(F(Y)<u)=P(Y <F'(u))=F[F"(u)]=u,0<u<l.
The density function is f,(u) =F;(u)=1, 0 <u <1, which is the density for the uniform
distribution on (0, 1).
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6.108

6.109

6.110

6.111
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The density function for Yis f(y)=+4,-1<y<3. ForU= Y?, the density function for U

is given by
f (W)= o1 [ F ) + F (),

as with Example 6.4. If -1 <y <3, then 0 <u<9. However, if ] <u<9, f(—\/a) is not
positive. Therefore,

fo(u)=

The system will operate provided that C; and C, function and C; or C, function. That is,
defining the system as S and using set notation, we have
S=(C,nC)N(C,uC,)=(C,nC,nC;))uU(C,nC,NnC,).
At some Y, the probability that a component is operational is given by 1 — F(y). Since the
components are independent, we have
P(S)=P(C,nC,nC,)+P(C,nC,nC,)-P(C,nC,nC,nC,).
Therefore, the reliability of the system is given by

[1-FYI +[1-Fy)’ - [1-FW)I*=[1 - FW)TIIL + Fy)l.

Let Cs be the production cost. Then U, the profit function (per gallon), is
G -Cy <Y <3
~|C,-C, otherwise

So, U is a discrete random variable with probability mass function
2/3

P(U=Ci-C3)= [20y*(1-y)dy=4156.
1/3

P(U=C,—C3)=1-,4156 = .5844.

a. Let X = next gap time. Then, P(X <60)=F, (60)=1-¢.
b. If the next four gap times are assumed to be independent, then Y = X; + X, + X5 + X4
has a gamma distribution with o =4 and f =10. Thus,

F(y) =t y'e"", y20.

a. LetU=1InY. So, § =+ and with fy(u) denoting the normal density function,

fo(y)=5 fo(ny) = mexpl_ (‘“y W’ J y>0.
b. Note that E(Y) = E(eY) = my(1) = e**° /2, where my(t) denotes the mgf for U. Also,
E(YZ) — E(eZU) — mu(z) — e2u+20'2 S0 V(Y) — e2u+262 . (eu+52/2)2 — e2u+0'2 (esz _ 1)
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6.112

6.113

6.114

6.115

6.116

a. Let U=1InY. So, § =+ and with fy(u) denoting the gamma density function,

fy (y) _ % fU (ln y) _ yr(;)ﬁa (ln y)ufle*(ln)’)/ﬁ — W(ln y)onfl y*(1+B)/B’ y > 1.

b. Similar to Ex. 6.111: E(Y) = E(e”) =my(1) = (1-p)™*, B < 1, where my(t) denotes the
mgf for U.

c. E(YH)=E@E)=my2)= 1-2B)*, p<.5,s0that V(Y)= (1-2B) ™ — (1-B) .

a. The inverse transformations are y; = U;/U; and Y, = U, so that the Jacobian of
transformation is 1/|u|. Thus, the joint density of U; and U, is given by

1
ful,uz(ul’uz) = fYI,Yz(U1/U2auz)m-
2

b. The marginal density is found using standard techniques.

c. If Y, and Y, are independent, the joint density will factor into the product of the
marginals, and this is applied to part b above.

1/3

The volume of the sphere is V= 47R*, or R= (£V )", so that 4 = 1(2)"*v2"_ Thus,

2/3. -1/3
f,(V)=2(Z)° v, 0<v< 4n.

a. Let R = distance from a randomly chosen point to the nearest particle. Therefore,
P(R > r) = P(no particles in the sphere of radius r) = P(Y = 0 for volume % 7r’).
Since Y = # of particles in a volume V has a Poisson distribution with mean Av, we have
PR>r1)=P(Y=0)=e @I >0,

Therefore, the distribution function for Ris F(r)=1-P(R>r)=1—-¢ ¥ V7% and the
density function is

f(r)=F/(r) =4aar’e @ 1> 0.

b. Let U=R’. Then,R=U""and & =1y~ Thus,
f,(U) = 4z g W=/ > 0,

This is the exponential density with mean 3;-.

a. The inverse transformations are y; = U; + U, and Y, = Up. The Jacobian of
transformation is 1 so that the joint density of U; and U, is

fuljuz(ul,uz): fY],Yz(u1+u2,u2).
b. The marginal density is found using standard techniques.

c. If Y, and Y, are independent, the joint density will factor into the product of the
marginals, and this is applied to part b above.
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7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

a. — C. Answers vary.
d. The histogram exhibits a mound shape. The sample mean should be close to 3.5 =

e. The standard deviation should be close to o/ \/g =1.708/ \/g = .9860.
f. Very similar pictures.

a.P(Y=2)=PW=6)=p@4,1,1)+p(1,4, 1)+p(l,1,4)+p(3,2,1)+pG3, 1,2)

= p(2’ 37 1) + p(27 17 3) + p(la 33 2)+ p(17 27 3) + p(za 27 2) = %
b. Answers vary, but the relative frequency should be fairly close.
c. The relative frequency should be even closer than what was observed in part b.

a. The histogram should be similar in shape, but this histogram has a smaller spread.
b. Answers vary.
c. The normal curve should approximate the histogram fairly well.

a. The histogram has a right—skewed shape. It appears to follow p(y) =y/21,y=1, ..., 6.
b. From the Stat Report window, p=2.667, ¢ = 1.491.

C. Answers vary.

d. 1. It has a right—skewed shape. 1i. The mean is larger, but the std. dev. is smaller.

e. 1. sample mean = 2.667, sample std. dev = 1.491//12 = .4304.
i1. The histogram is closely mound shaped.
iii. Very close indeed.

a. Answers vary.
b. Answers vary, but the means are probably not equal.
. The sample mean values cluster around the population mean.

d. The theoretical standard deviation for the sample mean is 6.03/ J5 =2.6967.

e. The histogram has a mound shape.
f. Yes.

The larger the sample size, the smaller the spread of the histogram. The normal curves
approximate the histograms equally well.

a. —b. Answers vary.

. The mean should be close to the population variance

d. The sampling distribution is not mound-shaped for this case.
e. The theoretical density should fit well.

f. Yes, because the chi—square density is right—skewed.

a. o = (6.03)* = 36.3609.

b. The two histograms have similar shapes, but the histogram generated from the smaller
sample size exhibits a greater spread. The means are similar (and close to the value
found in part a). The theoretical density should fit well in both cases.

c. The histogram generated with n = 50 exhibits a mound shape. Here, the theoretical
density is chi—square with v =50 — 1 =49 degrees of freedom (a large value).

143
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7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

a.P(Y - <.3)=P(-1.2<7Z<1.2)=.7698.
b.P(Y —p/<.3)= P(—.3\/ﬁ <Z< .3\/5) =1-2P(Z> .3\/3). For n= 25, 36, 69, and
64, the probabilities are (respectively) .8664, .9284, .9642, and .9836.

c. The probabilities increase with n, which is intuitive since the variance of Y decreases
with n.

d. Yes, these results are consistent since the probability was less than .95 for values of n
less than 43.

a.P(Y -y <.3)=P(.15vn <Z<.15Jn)=1-2P(Z>.154/n). Forn=09, the
probability is .3472 (a smaller value).
b. Forn=25: P(|Y —p|/<.3)=1-2P(Z>.75)=.5468
Forn=36: P(Y -p/<.3)=1-2P(Z>.9)=.6318
Forn=49: P(Y -y <.3)=1-2P(Z>1.05)=.7062
Forn=64: P(Y —p/<.3)=1-2P(Z>1.2)=.7698
c. The probabilities increase with n.
d. The probabilities are smaller with a larger standard deviation (more diffuse density).

P(Y — | <2)=P(-1.5<Z<1.5)=1-2P(Z> 1.5)= 1 — 2(.0668) = .8664.

From Ex. 7.11, we require P(|Y —p| < 1) = P(=.25+/n <Z<.25+/n)=.90. This will be
solved by taking .25 Jn =1.645, so n = 43.296. Hence, sample 44 trees.

Similar to Ex. 7.11: P(JY — | <.5) = P(<2.5 < Z <2.5) = .9876.

Similar to Ex. 7.12: we require P(|Y — p| <.5) = P(-=&-/n <Z<-+/n)=95. Thus,
ﬁ\/ﬁ =1.96 so that n = 6.15. Hence, run 7 tests.

Using Theorems 6.3 and 7.1:

a. E(X-Y)=pu,-

b. V(X-Y)=0;/m+c;/n.

c. Itisrequired that P(| X =Y —(u, —p,)| < 1) =.95. Using the result in part b for

standardization withn=m, o} =2, and 65 = 2.5, we obtain n = 17.29. Thus, the two
sample sizes should be at least 18.

Following the result in Ex. 7.15 and since the two population means are equal, we find

P(X,-Yy> 1)= P(W;Yg> ) =P(22289)=.0019.

P(Y 27 <6)= 57681

P(S* >3)=P(9S* >27) =.0014.



www.elsolucionario.net

Chapter 7: Sampling Distributions and the Central Limit Theorem 145

7.19

7.20

7.21

7.22

7.23

7.24

7.25
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Given that s> = .065 and n = 10, suppose o> = .04. The probability of observing a value
of s” that is as extreme or more so is given by

P(S? > .065) = P(95%.04 > 9(.065)/.04) = P(95%.04 > 14.925) = .10
Thus, it is fairly unlikely, so this casts some doubt that 6* = .04.

a. Using the fact that the chi—square distribution is a special case of the gamma
distribution, E(U) = v, V(U) = 2v.
b. Using Theorem 7.3 and the result from part a:

E(S*)=E(®LS?) =S (n-1)= ",

V(s = (£ fvts?) = (£ F an-1n]=26%n - 1).

These values can be found by using percentiles from the chi—square distribution.

With 6” = 1.4 and n = 20, 19°S? has a chi-square distribution with 19 degrees of freedom.

a. P(S?<b)=P(%!S? <lb) = P({5S” <{b) = .975. It must be true that
150 =32.8523, the 97.5%-tile of this chi-square distribution, and so b =2.42.

b. Similarly, P(S? > a)=P(%S? > :1a) = .974. Thus, {%a=8.96055, the 2.5%-tile

of this chi—square distribution, and so a = .656.
c. P(a<S*<b)=.95.

a. The corresponding gamma densities with parameters (a, B) are (5, 2), (20, 2), (40, 2),
respectively.

b. The chi—square densities become more symmetric with larger values of v.

C. They are the same.

d. Not surprising, given the answer to part b.

a. The three probabilities are found to be .44049, .47026, and .47898, respectively.
b. As the degrees of freedom increase, so do the probabilities.
c. Since the density is becoming more symmetric, the probability is approaching .5.

a. .05097

b..05097

c. 1 —2(.05097) = .8806.

d. The t—distribution with 5 degrees of freedom exhibits greater variability.

a. Using Table 5, t o = 1.476. Using the applet, t ;o = 1.47588.

b. The value t o is the 90™ percentile/quantile.

C. The values are 1.31042, 1.29582, 1.28865, respectively.

d. The t-distribution exhibits greater variability than the standard normal, so the
percentiles are more extreme than z j.

e. As the degrees of freedom increase, the t—distribution approaches the standard normal
distribution.
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7.26  From Definition 7.2,
P(g, <Y —n<g,) =P <T <%y = 90. Thus, it must be true that Y29 =t . and

o —t .. Thus, withn=9 and tes = 1.86, g, =185, g, =1%5

7.27 By Definition 7.3, S /S; has an F-distribution with 5 numerator and 9 denominator
degrees of freedom. Then,
a. P(S}/S;>2)=.17271.
b. P(S2/S <.5)= 23041,
C. P(S2/S%>2)+P(S2/S? <.5)=.17271 + 23041 = 40312,

7.28 a. Using Table 7, F o5 = 6.23.
b. The value F (5 is the 97.5%-tile/quantile.
c. Using the applet, F 975 = .10873.
d. Using the applet, F s =9.19731.
e. The relationship is 1/.10873 ~9.19731.

7.29 By Definition 7.3, Y = (W, /v,)+ (W, /v,) has an F distribution with v; numerator and v,
denominator degrees of freedom. Therefore, U=1/Y= (W, /v,)+(W,/v,) hasan F
distribution with v, numerator and v; denominator degrees of freedom.

730 a. E@2)=0,E@Z})=V(@) +[EQ)]=1.
b. This is very similar to Ex. 5.86, part a. Using that result, it is clear that
i.E(T)=0
ii. V(T) = E(T?) = vE(Z*/Y) = v/(v-2), v > 2.

7.31 a. The values for F; are 5.99, 4.89, 4.02, 3.65, 3.48, and 3.32, respectively.
b. The values for Fy; are decreasing as the denominator degrees of freedom increase.

c. From Table 6, 33, =13.2767.

d. 13.2767/3.32 = 4. This follows from the fact that the F ratio as given in Definition 7.3
converges to W,/ v; as v, increases without bound.

7.32 a. Using the applet, t s =2.01505.
b. P(T? >15)=P(T >t,)+P(T <-t,;)=.10.
c. Using the applet, F 1o = 4.06042.
d. F1o=4.06042 = (2.01505)* = t2..
e.Let F=T" Then, .10=P(F >F ) =P(T?>F,)=P(T <—/F,,)+P(T >,[F,,).
This must be equal to the expression given in part b.

7.33 Define T= Z/+W/v as in Definition 7.2. Then, T>=Z2/(W /v). Since Z* has a chi—

square distribution with 1 degree of freedom, and Z and W are independent, T> has an F
distribution with 1 numerator and v denominator degrees of freedom.
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7.35

7.36

7.37

7.38
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This exercise is very similar to Ex. 5.86, part b. Using that result, is can be shown that
a. E(F) =3 EW)EW, ) =2 ()= v, (v, =2), v2 > 2.

b. V(F) = E(F*)-[E(F)F = (=] EWHEW, ) - ()

(v, } 1 (v )2
- (v_?) vViVi+ D) a5 — G5

= vi(v, +v, -2V, (v, —2)* (v, = 4)], v2 > 4.

Using the result from Ex. 7.34,

a. E(F)=70/(70-2)=1.029.

b. V(F)=[2(70)*(118)]/[50(68)*(66)] = .076

C. Note that the value 3 1s (3 — 1.029)/ \.076 =17.15 standard deviations above this
mean. This represents and unlikely value.

We are given that 6; =205 . Thus, 6;/c; =2 and S /(2S;) has an F distribution with

10 — 1 = 9 numerator and 8 — 1 = 7 denominator degrees of freedom.

a. Wehave P(S}/S; <b)=P(S]/(2S;) <b/2)=.95. It must be that b/2 = F o5 = 3.68,
so b=7.36.

b. Similarly, a/2 = F g5, but we must use the relation a/2 = 1/F o5, where F ¢s is the 95t

percentile of the F distribution with 7 numerator and 9 denominator degrees of
freedom (see Ex. 7.29). Thus, with F s =3.29 = .304, a/2 = 2/3.29 = .608.

c. P(.608<S]/S} <7.36)=.90.

a. By Theorem 7.2, y° with 5 degrees of freedom.
b. By Theorem 7.3, %> with 4 degrees of freedom (recall that 6* = 1).

c. Since Y/ is distributed as x> with 1 degrees of freedom, and z; (Y,-Y) and Y. are
independent, the distribution of W + U is x> with 4 + 1 = 5 degrees of freedom.

a. By Definition 7.2, t—distribution with 5 degrees of freedom.
b. By Definition 7.2, t—distribution with 4 degrees of freedom.

c. Y follows a normal distribution with n=0, o’ = 1/5. So, \/gY_ 1s standard normal and
(\/EY_)Z is chi—square with 1 degree of freedom. Therefore, 5Y > + Y,> has a chi-square

distribution with 2 degrees of freedom (the two random variables are independent). Now,
the quotient

25Y 2 +Y)/U =[(5Y > +Y.)/2]+[U /4]
has an F-distribution with 2 numerator and 4 denominator degrees of freedom.

Note: we have assumed that Y and U are independent (as in Theorem 7.3).
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7.39

7.40

7.41

a. Note that fori=1, 2, ..., k, the X . have independent a normal distributions with mean

ui and variance o/n;. Since 0 , a linear combination of independent normal random
variables, by Theorem 6.3 6 has a normal distribution with mean given by
E@®)=E(C,X, +..+6,X )= i,
and variance
V(@®)=V(e X, +..+cX)=c> c’/n

b.Fori=1,2,...,k, (n,—=1)S’/c” follows a chi-square distribution with n; — 1 degrees
of freedom. In addition, since the S’

SszE =3 (n,-DS} /o

is a sum of independent chi—square variables. Thus, the above quantity is also distributed
as chi—square with degrees of freedom z:;l(ni -1) :z:(:l n, —k.

are independent,

0-0

o> c/n,

has a standard normal distribution. Therefore, by Definition 7.2, a random variable
constructed as

c. From part a, we have that

S /o’ 0-0

Z (n, -1
c,/ ‘el >N -k \/MSE

has the t—distribution with Zizl n, —k degrees of freedom. Here, we are assuming that 0

and SSE are independent (similar to Y and S as in Theorem 7.3).

a. Both histograms are centered about the mean M = 16.50, but the variation is larger for
sample means of size 1.

b. For sample means of size 1, the histogram closely resembles the population. For
sample means of size 3, the histogram resembles the shape of the population but the
variability is smaller.

C. Yes, the means are very close and the standard deviations are related by a scale of V3.
d. The normal densities approximate the histograms fairly well.
e. The normal density has the best approximation for the sample size of 25.

a. For sample means of size 1, the histogram closely resembles the population. For
sample means of size 3, the histogram resembles that of a multi-modal population. The
means and standard deviations follow the result of Ex. 7.40 (¢), but the normal densities
are not appropriate for either case. The normal density is better with n = 10, but it is best
with n =25.

b. For the “U-shaped population,” the probability is greatest in the two extremes in the
distribution.
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7.43

7.44

7.45

7.46

7.47

7.48

7.49

7.50
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Let Y denote the sample mean strength of 100 random selected pieces of glass. Thus,
the quantity (Y — 14.5)/.2 has an approximate standard normal distribution.

a. P(Y >14)=P(Z>2.5)=.0062.
b. We have that P(-1.96 <Z < 1.96) = .95. So, denoting the required interval as (a, b)

such that P(a< Y <b) = .95, we have that —1.96 = (a— 14)/.2 and 1.96 = (b — 14)/.2.
Thus, a=13.608, b = 14.392.

Let Y denote the mean height and 6 = 2.5 inches. By the Central Limit Theorem,
P(Y —u[<.5)=P(=5<Y —u<.5) 2 P(22 <7 <Z ) =P(-2< Z <2) = .9544.

Following Ex. 7.43, we now require
P(Y —n|<4)=P(-4<Y —u<4)~ P(EN <7 <30y = 95,
Thus, it must be true that % =1.96, or n = 150.0625. So, 151 men should be sampled.

Let Y denote the mean wage calculated from a sample of 64 workers. Then,
P(Y <6.90) ~ P(Z < 86570y _ p(7 < —1.60) =.0548.

With n =40 and ¢ = (range)/4 = (8 — 5)/4 = .75, the approximation is
P(Y —p|<.2)~ P(1Z | <UDy = P(~1.69 < Z <1.69) =.9090.

(Similar to Ex. 7.44). Following Ex. 7.47, we require

P(Y —p|<.1)~P(|Z | <Dy = 90
Thus, we have that % =1.645, son=152.21. Therefore, 153 core samples should be
taken.

a. Although the population is not normally distributed, with n = 35 the sampling
distribution of Y will be approximately normal. The probability of interest is

P(Y —u|<1)=P(-1<Y —u<1).
In order to evaluate this probability, the population standard deviation ¢ is needed. Since
it is unknown, we will estimate its value by using the sample standard deviation S =12 so

that the estimated standard deviation of Y is 12/ \/3_ =2.028. Thus,
P(Y —u <D =P(=1<Y —u<1) 2 P(~5L5 < Z < 555) = P(—49 < Z < .49) = 3758,

b. No, the measurements are still only estimates.

With p = 1.4 hours, o =.7 hour, let Y = mean service time for n = 50 cars. Then,
P(Y >1.6)~ P(Z > U1y — p(7 5 2.02) =.0217.

We have P(|Y —p|l<1)=P(|Z |<

L) =P(-1<Z <1) = .6826.

o/
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751  Werequire P(|Y —u|<1)=P(|Z |< ') =P(-'=

true that W = 7005 = 2.576. So, n=663.57, or 664 measurements should be taken.

<Z< W) =.99. Thus it must be

752 LetY denote the average resistance for the 25 resistors. With p =200 and ¢ = 10 ohms,
a. P(199<Y <202)=~P(-5<Z<1)=.5328.
b. Let X = total resistance of the 25 resistors. Then,
P(X<5100)=P(Y <204)~P(Z<2)=.9772.

7.53 a. With these given values for 1 and o, note that the value 0 has a z—score of (0 — 12)/9 =
1.33. This is not considered extreme, and yet this is the smallest possible value for CO
concentration in air. So, a normal distribution is not possible for these measurements.

b. Y is approximately normal: P(Y >14)~ P(Z > {19012y _ p(7 52 22) = .0132.

754  P(Y <1.3)~ P(Z <¥BU19) _ p(7 <-10) =0, so it is very unlikely.

755 a. i. We assume that we have a random sample

il. Note that the standard deviation for the sample mean is .8/ 30 =.146. The
endpoints of the interval (1, 5) are substantially beyond 3 standard deviations
from the mean. Thus, the probability is approximately 1.

b. Let Y; denote the downtime for day i, i=1, 2, ..., 30. Then,
PC"Y, <115)=P(Y <3.833) » P(Z < 0089y _ p(7 < —1.14) =.1271.

7.56  Let Y; denote the volume for sample i, i=1, 2, ..., 30. We require
P(C"Y, >200) = P(Y —p < 20— ) » P(Z < 2060 = 95,

Thus, 300 = 7~ =_1.645, and then p = 4.47.

7.57 LetY; denote the lifetime of the i™ lamp, i=1,2, ..., 25, and the mean and standard

deviation are given as 50 and 4, respectively. The random variable of interest is ZilYi ,

which is the lifetime of the lamp system. So,
P(Y" Y, > 1300) = P(Y > 52) = P(Z > ¥25250) = P(Z > 2.5) = .0062.

758 For Wi =Xi — Vi, we have that E(W;) = E(X)) — E(Yi) = 1 — p and V(W) = V(X;) — V(Y)) =
o} +0; since X; and Y; are independent. Thus, W =1 in:lWi = %Z::I(Xi -Y)=X-Y
so EW) =p; —p, and V(W) = (o7 +63)/n. Thus, since the W; are independent,

[ (X=V)=(—) W —EQW)

" Jotieh)in VW)

satisfies the conditions of Theorem 7.4 and has a limiting standard normal distribution.




www.elsolucionario.net

Chapter 7: Sampling Distributions and the Central Limit Theorem 151

7.59

7.60

7.61

7.62

7.63

7.64

7.65

7.66

7.67

Instructor’s Solutions Manual

Using the result of Ex. 7.58, we have that n =50, 6, =0, =2 and p; = 1. Let X denote
the mean time for operator A and let Y denote the mean time for operator B (both
measured in seconds) Then, operator A will get the job if X — Y <—1. This probability
is

P(X -V <-1)= Pz <.

)= Pz <-2.5) =.0062.

Extending the result from Ex. 7.58, let X denote the mean measurement for soil A and
Y the mean measurement for soil B. Then, we require

PIX =¥ =, —p,)| <.05]= P| 2] < | =Plz]<25] = 9876,

It is necessary to have

P[X =¥ —(u, —p,)| <.04]~ P:|z|sﬁ: ~Plz] <L |- 90.

Thus, J?Tfr(‘)z =12, =1.645,s0n=50.74. Each sample size must be at least n = 51.
Let Y; represent the time required to process the ™ person’s order, i =1, 2, ..., 100. We

have that p = 2.5 minutes and ¢ = 2 minutes. So, since 4 hours = 240 minutes,
PN, >240) = P(Y >2.4) ~ P(Z > 102429y - p(Z > —.5) =.6915.

Following Ex. 7.62, consider the relationship P(Z:=1Yi <120) =.1 as a function of n:
Then, P} Y, <120) = P(Y <120/n) = P(Z <*"12/"22) — ] So, we have that

«/5(1202/n—2.5) — 7210 — 71 .282
Solving this nonlinear relationship (for example, this can be expressed as a quadratic
relation in v/n ), we find that n = 55.65 so we should take a sample of 56 customers.

a. two.
b. exact: .27353, normal approximation: .27014
C. this is the continuity correction

a. exact: .91854, normal approximation: .86396.
b. the mass function does not resemble a mound—shaped distribution (n is not large here).

Since P([Y —E(Y)|<1)=P(E(Y)-1<Y<EMY)+1)=Pnp—-1<Y<np+1),ifn=20
and p=.1, P(1 <Y <3)=.74547. Normal Approximation: .73645.

a. n =15 (exact: ..99968, approximate: .95319), n = 10 (exact: ..99363, approximate:
.97312), n =15 (exact: .98194, approximate: .97613), n = 20 (exact: .96786,
approximate: .96886).

b. The binomial histograms appear more mound shaped with increasing values of n. The
exact and approximate probabilities are closer for larger n values.

c. rule of thumb: n > 9(.8/.2) = 36, which is conservative since n = 20 is quite good.
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7.68

7.69

7.70

7.71

7.72

7.73

7.74

7.75

7.76

a. The probability of interest is P(Y > 29), where Y has a binomial distribution with n =
50 and p = .48. Exact: .10135, approximate: .10137.

b. The two probabilities are close. With n =50 and p = .48, the binomial histogram is
mound shaped.

a. Probably not, since current residents would have learned their lesson.
b. (Answers vary). With b =32, we have exact: ..03268, approximate: .03289.

a. p+34pg/n<le3ypg/n<qe9pg/n<g’ < 9p/q<n.
b. p—3{pg/n<le3pg/n<pe9pg/n< p’ <9q/p<n.
c. Parts a and b imply that n >9max(5p,%), and it is trivial to show that

P g )_ max(p,q) 1 —
max(E,F)— mnpg, (consider the three cases where p=q, p>¢, p<q.

a.n>9,
b.n>14,n>14,n>36,n>36,n> 891, n>8991.

Using the normal approximation, P(Y >15)~ P(Z > %) =P(Z>1.5)=.0668.

Let Y = # the show up for a flight. Then, Y is binomial with n =160 and p=.95. The
probability of interest is P(Y < 155), which gives the probability that the airline will be
able to accommodate all passengers. Using the normal approximation, this is

P(Y <155)~ P(Z s%%) =P(Z<1.27)=.8980.

a. Note that calculating the exact probability is easier: with n = 1500, p = 1/410,
P(Y>1)=1-P(Y=0)=1-(409/410)"" = .9504.
b. Here, n=1500, p = 1/64. So,

P(Y >30) ~ P(Z > £2455) = P(Z > 1.47) = .0708.

C. The value y =30 is (30 — 23.4375)/+/23.0713 = 1.37 standard deviations above the
mean. This does not represent an unlikely value.

Let Y = # the favor the bond issue. Then, the probability of interest is

P(% - p|<.06)=P(~.06 < - p<.06)~ P(\/% <7< %}: P(-1.2<Z <12) =.7698.

a. We know that V(Y/n) = p(1 — p)/n. Consider n fixed and let g(p) = p(1 — p)/n. This
function is maximized at p = 1/2 (verify using standard calculus techniques).

)=95.
Thus, it must be true that \/ﬁ =1.96. Since p is unknown, replace it with the value 1/2

b. It is necessary to have Pq% - p| < .1): .95, or approximately PUZ| < Té/n

found in part a (this represents the “worse case scenario”) and solve for n. In so doing, it
is found that n = 96.04, so that 97 items should be sampled.
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(Similar to Ex. 7.76). Here, we must solve

\/% =201 = 2.33. Using p = 1/2, we find
that n = 60.32, so 61 customers should be sampled.

Following Ex. 7.77: if p = .9, then
Q——p|< 15)~P UZ| N ERTED

-)=P(z|<3.54)~1.

a. Using the normal approximation:

P(Y 22)=P(Y 21.5) = P(Z > 125.) = P(Z > —67) = .7486.

b. Using the exact binomial probability:
PYY>22)=1-P(Y <1)=1-.271=.729.

Let Y =# in the sample that are younger than 31 years of age. Since 31 is the median
age, Y will have a binomial distribution with n = 100 and p = 1/2 (here, we are being
rather lax about the specific age of 31 in the population). Then,

P(Y 260) = P(Y 259.5) ~ P(Z > 725) = P(Z > 1.9) = .0287.

Let Y =# of non—conforming items in our lot. Thus, with n = 50:
a. With p =1, P(lot is accepted) = P(Y < 5) = P(Y < 5.5) = P(Z < 3220 —

V50(1)(9)
P(Z <.24)=.5948.
b. With p=.2 and .3, the probabilities are .0559 and .0017 respectively.

Let Y =# of disks with missing pulses. Then, Y is binomial with n =100 and p = .2.

Thus, P(Y >15)=P(Y >14.5)~ P(Z > %) P(Z >-1.38) = .9162.

a. Let Y = # that turn right. Then, Y is binomial with n =50 and p = 1/3. Using the
applet, P(Y <15) = .36897.

b. Let Y = # that turn (left or right). Then, Y is binomial with n =50 and p = 2/3. Using
the applet, P(Y > (2/3)50) = P(Y > 33.333) = P(Y > 34) = .48679.

Y, EYD _EM) _mp Py _
a Bl )= S f = e o p

n ) n

b V(Yl1 _ 2) V;Y2|)+V(Yzz) — nlplqu + nzpzz(h — Pa + P20, .
|

'} n N, mn I}

It is given that p; = .1 and p, = .2. Using the result of Ex. 7.58, we obtain
Pq (P - pz)‘ < 1) (|Z| Wj

Let Y = # of travel vouchers that are improperly documented. Then, Y has a binomial
distribution with n = 100, p =.20. Then, the probability of observing more than 30 is

P(Y >30)=P(Y >30.5)~ P(Z > %) = P(Z >2.63) =.0043.

We conclude that the claim is probably incorrect since this probability is very small.

<1.4)=.8414.




www.elsolucionario.net

154 Chapter 7: Sampling Distributions and the Central Limit Theorem
Instructor’s Solutions Manual

7.87 Let X = waiting time over a 2—day period. Then, X is exponential with § = 10 minutes.
Let Y = # of customers whose waiting times is greater than 10 minutes. Then, Y is
binomial with n = 100 and p is given by

0

p= J%e‘y“‘)dy =e™' =.3679.
10

~ 50-100(.3697) _ —

7.88  Since the efficiency measurements follow a normal distribution with mean p = 9.5
lumens and ¢ = .5 lumens, then

Y =mean efficiency of eight bulbs
follows a normal distribution with mean 9.5 lumens and standard deviation .5/ \/§ )

Thus, P(Y >10) = P(Z > 125%) = P(Z > 2.83) = .0023.

7.89 Following Ex. 7.88, it is necessary that P(Y >10)=P(Z > %) = .80, where p denotes

the mean efficiency. Thus, - < [ —.84 son=10.15.

7.90 Denote Y =# of successful transplants. Then, Y has a binomial distribution with n = 100
and p = .65. Then, using the normal approximation to the binomial,

~ 70-100(.65) _ _

7.91 Since X, Y, and W are normally distributed, so are X, Y, and W. In addition, by

Theorem 6.3 U follows a normal distribution such that
v =EU)=4p, +2p, +.4p,

—V(U)=16(2 )+ .04{c J+ 162 ).

7.92 The desired probability is

PIX-¥]>.6]=P [|z|< <.50] = .6170.

—} = [
[(64) +(64) 1/64

7.93 Using the mgf approach, the mgf for the exponential distribution with mean 6 is
m, (H)=(1-6t)",t<1/0.
The mgf for U=2Y/0 is
m, () =EE")=EE"™")=m,(2t/0)=(1-2t)", t<1/2.
This is the mgf for the chi—square distribution with 2 degrees of freedom.

7.94  Using the result from Ex. 7.93, the quantity 2Y;/20 is chi—square with 2 degrees of
freedom. Further, since the Y; are independent, U = Z; 2Y, /20 1is chi—square with 10

degrees of freedom. Thus, P(ZS Y; > C): PU > <) =.05. So, it must be true that
5= Xos =18.307, or c = 183.07.
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%
S/4/10

has an F—distribution with 1 numerator and 9

a. Since pu = 0 and by Definition 2, T = has a t—distribution with 9 degrees of

Y* 1oY?
s*/10  S?
denominator degrees of freedom (see Ex. 7.33).

freedom. Also, T? =

2

b. By Definition 3, T = le_z has an F—distribution with 9 numerator and 1

denominator degrees of freedom (see Ex. 7.29).

c. With 9 numerator and 1 denominator degrees of freedom, F o5 = 240.5. Thus,

S? S’ S
95=P| - 77 <2405 |= P| 5 <2405 | = P| ~49.04 <= <49.04 ),

oy ?
so € =49.04.

Note that Y has a beta distribution with @ =3 and p=1. So, p = 3/4 and o = 3/80. By
the Central Limit Theorem, P(Y >.7)~ P(Z > 7o) =P(Z>-1.63) =.9484.

a. Since the X are independent and identically distributed chi—square random variables
with 1 degree of freedom, if Y = Zin:l X, , then E(Y) =nand V(Y) = 2n. Thus, the

conditions of the Central Limit Theorem are satisfied and

Z:Y—n X -1

Jan 2’

b. Since each Y; is normal with mean 6 and variance .2, we have that

s0 (Y, —6)°
TR
is chi—square with 50 degrees of freedom. Fori=1,2, ..., 50, let C; be the cost for a

single rod, Then, C;=4(Y; — 6)* and the total cost is T = Zislei =.8U . By Ex. 7.97,
60-50

4100

P(T >48)=P(.8U >48)=P(U > 60)~ P(Z > ]: P(Z >1) =.1587.

a. Note that since Z has a standard normal distribution, the random variable Z/c also has a
normal distribution with mean 0 and variance 1/¢* = v/w. Thus, we can write the
conditional density of T given W =w as

f(tjw)=—=\/2e™ Y —w<t<ow.

b. Since W has a chi—square distribution with v degrees of freedom,
f (t,W) = f (t | W) f (W) = \/;7 \/ge*""t 2v) (F(V/zl)zv/z WV/27le—w/2).

C. Integrating over w, we obtain
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[ [w —wtz/(gv)( 1 v/2-1 —w/z}j _J‘ | ! [_ﬂ( i) [(v+1)/2]-1
f (t) N .[ Van ve r(v/2)2"'2 w € W= Jrv T(v/2)20v+D/2 CXP[~> 1+ v dw.
0 0

Writing another way this is,

(142 /VT‘ R r[(wl)/z]oO 1 1 1 [ w( t2 )}\N[(wl)/zH
f (t) F(V/Z) F[(V+1)/2] 2(\r+l),2 (l+t2/v)7(v+1)/2 eXp _7 1 +T dW.
0

The integrand is that of a gamma density with shape parameter (v+1)/2 and scale
parameter 2/ [1 +t2/ v], so it must integrate to one. Thus, the given form for f(t) is
correct.

7.99 a. Similar to Ex. 7.98. For fixed W, = w,, F = W,/c, where ¢ = W,v/v,. To find this
conditional density of F, note that the mgf for W, is

m,, () =(1-2t)™"2,
The mgf for F=W,/c is
me (t)=m,, (t/c)=(1-2t/c)™".
Since this mgf is in the form of a gamma mgf, the conditional density of F, conditioned
that W, = w,, is gamma with shape parameter v, and scale parameter 2v,/(W,v).

b. Since W has a chi—square distribution with v, degrees of freedom, the joint density is
£ /21 g= v (2v2) ) (2 12)-T =W, /2
g(f,W2)=g(f’W2)f(W2)= wY2v, /2 iz e
N A

W, vy

£ /DL v2) 21T g =W 2 v, v +]
2

/2
F(‘;l X\\:T )V‘ 1—*(\’22 )2(v|+Vz)/2
C. Integrating over W,, we obtain,

f /21 @
W[(vﬁ—v2 )/2]—le—(w2 12)[ fv, /v2+l]dW

g(f)= F(Vzl sz )vl/zr(\%)z(v]wz)/z .([ 2

Vi

9 .

The integrand can be related to a gamma density with shape parameter (v; + v,)/2 and
scale parameter 1 (1+ fv,/v,)" in order to evaluate the integral. Thus:

g(f)= F(WTVZ) f /21 (1 + fv, /Vz)*(vlwz)/z
r(%)r("?l) (v—z)vl/z 2(V1+v2)/2

7.100 The mgf for Xis my ()= exp(?»et — 1).
a. The mgf for Y =(X —x)/\/i is given by
m, ()= E(e" ) =™ m, (t/v7) = explae’ * —tya 1.

,f>0.

b. Using the expansion as given, we have
m, (t)—exp[ t\/x+7»( +i + mm 4o )J exp( +6;“2 _|_)
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As A — oo, all terms after the first in the series will go to zero so that the limiting form
of the mgfis m, () = exp(%)

c. Since the limiting mgf is the mgf of the standard normal distribution, by Theorem 7.5
the result is proven.

Using the result in Ex. 7.100,
P(X <110)~P(Z S%) =P(Z <1) =.8413.

Again use the result in Ex. 7.101,
P(Y 245)~ P(Z>%2%)=P(Z 21.5) =.0668.

Following the result in Ex. 7.101, and that X and Y are independent, the quantity
X =Y =, ~1,)

A+

has a limiting standard normal distribution (see Ex. 7.58 as applied to the Poisson).
Therefore, the approximation is
P(X =Y >10)~P(Z >1) =.1587.

The mgf for Y, is given by
m, (t)= [1— P+ pe‘]n.
Let p = A\/n and this becomes
m, () =[1-2+2e' [ =[1+L0e D]
As n — oo, this is exp(ket - 1), the mgf for the Poisson with mean A.

Let Y =# of people that suffer an adverse reaction. Then, Y is binomial with n = 1000
and p =.001. Using the result in Ex. 7.104, we let A = 1000(.001) = 1 and evaluate

P(Y >2)=1-P(Y <1)~1-.736 = 264,

using the Poisson table in Appendix 3.
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Let B =B(0). Then,
MSE(®) = E[(8 - 6)* |- E[( - E®) + B)? |- E[(é— E(é))z} +E(B) +2BxE[d - E®)]

=V (0)+B>.

. The estimator  is unbiased if E(6)= 0. Thus, B(6)=0.
. E(6)=0+5.

. Using Definition 8.3, B(§)=a0 +b—0=(a—1)0 +b.
. Let 0" =(6-b)/a.

. They are equal.

MSE(6) >V (0).

. Note that E(0")=0 and V(8")=V[(0-b)/a]=V(0)/a’. Then,

MSE(0") =V (0") =V (0)/a>.

. Note that MSE(8) =V (6)+ B(0) =V (8) +[(a—1)0 +b]*. A sufficiently large value of

a will force MSE(0") < MSE(0). Example: a = 10.

. A amply small value of a will make MSE(é*) > MSE(é) . Example: a=.5,b=0.

E(0,)=aE(,)+(1-a)E(d,)=ad+(1-a)0=0.

. V(0,)=aV(0,)+(1-a)*V(,)=a’c? +(1—a)o?, since it was assumed that 6, and

é2 are independent. To minimize V (63 ), we can take the first derivative (with
respect to a), set it equal to zero, to find
2
a=—22
) 2"
o, +0,

(One should verify that the second derivative test shows that this is indeed a
minimum.)

Following Ex. 8.6 but with the condition that él and é2 are not independent, we find

V(0,)=a’c? +(1-a)o’ +2a(l-a)c.

Using the same method w/ derivatives, the minimum is found to be

G;—C
a=—F—5——.
o, +0,-2C

158
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a. Note that él , éz , 63 and és are simple linear combinations of Yy, Y,, and Y3. So, it is
casily shown that all four of these estimators are unbiased. From Ex. 6.81 it was shown
that 6, has an exponential distribution with mean 6/3, so this estimator is biased.

b. It is easily shown that V(8,) = 07, V(8,) = 6%2, V(8,) = 56%/9, and V(. ) = 6%/9, so

the estimator és is unbiased and has the smallest variance.

The density is in the form of the exponential with mean 6 + 1. We know that Y is
unbiased for the mean 0 + 1, so an unbiased estimator for 0 is simply Y — 1.

a. For the Poisson distribution, E(Y) = A and so for the random sample, E(Y ) =A. Thus,
the estimator A =Y is unbiased.

b. The result follows from E(Y) = A and E(Y?) = V(Y) + 1> = 2%, so E(C) = 4\ + A%

c. Since E(Y )=Land E(Y?*)=V(Y )+ [E(Y )= A*/n+2%= A*(1+1/n). Then, we

can construct an unbiased estimator 0 =Y 2 +Y (4-1/n).

The third central moment is defined as

E[(Y —p)’T=E[(Y =3)’]=E(Y*)-9E(Y*)+54.
Using the unbiased estimates é2 and éS , it can easily be shown that éS -9 é2 + 54 1s an
unbiased estimator.

a. For the uniform distribution given here, E(Y;) =0 +.5. Hence, E(Y ) =0 + .5 so that
B(Y )=.5.

b. Based on Y, the unbiased estimatoris Y —.5.
c. Note that V(Y ) =1/(12n) so MSE(Y ) =1/(12n)+.25.

a. For arandom variable Y with the binomial distribution, E(Y) = np and V(Y) = npg, so
E(Y?) = npq + (np)>. Thus,

E{()-£)=E(Y)-LE(Y*)=np- pg-np> =(n-1)pq.

b. The unbiased estimator should have expected value npq, so consider the estimator

6=l -+].
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8.14  Using standard techniques, it can be shown that E(Y) = (ﬁ)@ ,E(YH) = (ﬁ)@z . Also, it
is easily shown that Y ) follows the power family with parameters na and 6.

a. From the above, E(0)= E(Yp) = (

to (et )y — (Dol
b. Since a is known, the unbiased estimator is (g—a)e ( o )Y(m

, so that the estimator is biased.

no+1

c. MSE(Y,,)=E[(Y, —0)*]=E(Y2)-20E(Y,,)+0 = 0.

(n(x+1)(na+2)

8.15 Using standard techniques, it can be shown that E(Y) =(3/2)B, E(Y?) = 3p>. Also it is
easiliy shown that Y;) follows the Pareto family with density function

9y (y)=3np>"y "y > B,
Thus, E(Y(y) = (228 and E(Y;)) = 2,

3n-1 3n 2

a. Wlth B:Y(l)’ B(B) (3n 1)3 B (3n 1)3
b. Using the above, MSE(f) = MSE(Y,,,) = E(Y;,) — 2BE(Y,,) +B* = Y E=) p*.

8.16 Itis known that (n —1)S*/c” is chi—square with n—1 degrees of freedom.

a. E(S)= E{ﬁ[(”;l}sz]/

~n-IC[(n-1)/2]
T Jar(n2)

v'/2 1 (-1)/2-v/24y, _ o 20(n/2)
} I 220072V eV = 7 Fmn -

b. The estimator 6 = S is unbiased for o.

c. Since E(Y ) = p, the unbiased estimator of the quantity is Y -z 6.

8.17 Itis given that f, is unbiased, and since E(Y) =np, E( p,) = (np + 1)/(n+2).

a. B(p,)=mp+1)/(n+2)—p=(1-2p)/(n+2).
b. Since f, is unbiased, MSE( p,) = V(p,) =p(1-p)/n. MSE( p,)=V(p,)+B(p,)=

np(1-p)+(1-2p)°
(n+2)?
c. Considering the inequality

np(1-p)+(1-2p)* _ p(l-p)
(n+2)? no

this can be written as
@n+4)p>-@n+4)p+n<0.
Solving for p using the quadratic formula, we have

8N-+4+,/(8n+4)2—4(8n+4)n

_ _1 [+
p= 2(8n+4) -2 - * 8n+4 .

So, p will be close to .5.

8.18 Using standard techniques from Chapter 6, is can be shown that the density function for
Yy 1s given by
n—1
g(l)(y) :%(1 _%) 5 0 <y= 0.
So, E(Y(1)) = -% and so an unbiased estimator for 0 is (n+1)Y .

n+1
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8.19  From the hint, we know that E(Y(;)) = B/n so that 6= NY( is unbiased for 3. Then,
MSE(6)=V(0) +B(6) = V(nY) = n°V(Yq) = B,

8.20 IfY has an exponential distribution with mean 0, then by Ex. 4.11, E(~Y )=+/n0/2.
a. Since Y; and Y; are independent, E(X) = n0/4 so that (4/m)X is unbiased for 0.

b. Following part a, it is easily seen that E(W) = n°0%/16, so (4*/n*)W is unbiased for 6.

8.21 Using Table 8.1, we can estimate the population mean by y = 11.5 and use a two—
standard—error bound of 2(3.5)/ V50 = .99. Thus, we have 11.5 + .99.

8.22  (Similar to Ex. 8.21) The point estimate is Y = 7.2% and a bound on the error of
estimation is 2(5.6)/4/200 =.79%.

8.23 a. The point estimate is Y = 11.3 ppm and an error bound is 2(16.6)/+/467 = 1.54 ppm.
b. The point estimate is 46.4 — 45.1 = 1.3 and an error bound is 2S5 4 (1027 — 1 7,

c. The point estimate is .78 — .61 = .17 and an error bound is \/(78)( 22 ) = 08,

8.24  Note that by using a two—standard—error bound, 2,/*2X0 = (0292 = .03. Constructing

this as an interval, this is (.66, .72). We can say that there is little doubt that the true
(population) proportion falls in this interval. Note that the value 50% is far from the
interval, so it is clear that a majority did feel that the cost of gasoline was a problem.

8.25 We estimate the difference to be 2.4 — 3.1 =—.7 with an error bound of 2,/144264 = 404,

8.26  a. The estimate of the true population proportion who think humans should be sent to

Mars is .49 with an error bound of 2,0 = 03.

b. The standard error is given by 4/ @ , and this is maximized when p=.5. So, a
conservative error bound that could be used for all sample proportions (with n = 1093) is
2 % =.0302 (or 3% as in the above).

8.27 a. The estimate of p is the sample proportion: 592/985 = .601, and an error bound is
.601(.399)

given by 2,/~—=— =.031.

b. The above can be expressed as the interval (.570, .632). Since this represents a clear
majority for the candidate, it appears certain that the republican will be elected.
Following Example 8.2, we can be reasonably confident by this statement.

c. The group of “likely voters” is not necessarily the same as “definite voters.”
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8.28

8.29

8.30

8.31

8.32

8.33

8.34

8.35

The point estimate is given by the difference of the sample proportions: .70 — .54 = .16

and an error bound is 21/%+% =.121.

a. The point estimate is the difference of the sample proportions: .45 — .51 =—.06, and an

A45(.55) .51(.49) — 045

error bound is 24/ + =55

b. The above can be expressed as the interval (—.06 —.045, —.06 + .045) or (—.105, —.015).
Since the value 0 is not contained in the interval, it seems reasonable to claim that fan
support for baseball is greater at the end of the season.

The point estimate is .45 and an error bound is 2,/ = 031. Since 10% is roughly

three times the two—standard—error bound, it is not likely (assuming the sample was
indeed a randomly selected sample).

a. The point estimate is the difference of the sample proportions: .93 — .96 =—.03, and an

.93(.07) 96(.04) __
T 960~ 041,

error bound is 2

b. The above can be expressed as the interval (—.071, .011). Note that the value zero is
contained in the interval, so there is reason to believe that the two pain relievers offer the
same relief potential.

With n =20, the sample mean amount y = 197.1 and the standard deviation s = 90.86.

e The total accounts receivable is estimated to be 500( y ) = 500(197.1) = 98,550.
The standard deviation of this estimate is found by 1/0 (500Y ) = 500755 - So, this

can be estimated by 500(90.86)/+/20 =10158.45 and an error bound is given by
2(10158.46) = 20316.9.

e With ¥ =197.1, an error bound is 2(90.86)/4/20 =40.63. Expressed as an

interval, this is (197.1 —40.63, 197.1 + 40.63) or (156.47, 237.73). So, it is
unlikely that the average amount exceeds $250.

3(7

The point estimate is 6/20 = .3 and an error bound is 24/ = .205. If 80% comply, and

20% fail to comply. This value lies within our error bound of the point estimate, so it is
likely.

An unbiased estimator of A is Y , and since 1/0 (Y) =+/A/n, an unbiased estimator of the
standard error of is VY /n .

Using the result of Ex. 8.34:
a. The point estimate is ¥ =20 and a bound on the error of estimation is 24/20/50 =
1.265.
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b. The point estimate is the difference of the sample mean: 20 — 23 = -3.

8.36  An unbiased estimator of 0 is Y , and since 1/0 Y)=6/ Jn , an unbiased estimator of the
standard error of is Y //n .

8.37 Refer to Ex. 8.36: with n = 10, an estimate of 6 = ¥ = 1020 and an error bound is
2(1000/+/10) = 645.1.

8.38 To find an unbiased estimator of V(Y ) = # — ip, note that E(Y) = L so Y is an unbiased

p
estimator of . Further, EY?)=VY)+[EY)] =%— so EY?+Y)==2

1
p p? °

Therefore, an unbiased estimate of V(Y) is 12 +Y =YL,

8.39  Using Table 6 with 4 degrees of freedom, P(.71072 <2Y /B <9.48773) =.90. So,
P32 <p<-25) = .90

9.48773 — .71072

and (L L) forms a 90% CI for .

9.48773 > 71072

8.40  Use the fact that Z =" has a standard normal distribution. With ¢ = 1:

a. The 95% Clis (Y —1.96, Y + 1.96) since
P(-1.96 <Y —nu<1.96)=P(Y =196 <pu<Y +1.96)=.95.
b. The value Y + 1.645 is the 95% upper limit for p since
P(Y —u<1.645)=P(u<Y +1.645)=.95.

c. Similarly, Y —1.645 is the 95% lower limit for p.

8.41 Using Table 6 with 1 degree of freedom:
a. .95=P(.0009821<Y?/c’ <5.02389)=P(Y*/5.02389 <G> <Y?*/.0009821).

b. .95=P(.0039321<Y?/c*)=P(c> <Y2/.0039321).
C. 95=P(Y?/c> <3.84146)=P(Y>/3.84146 < c%).

8.42  Using the results from Ex. 8.41, the square-roots of the boundaries can be taken to obtain
interval estimates o:
a. Y/2.24<0<Y/.0313.
b. 6<Y/.0627.
c. o=>Y/1.96.

8.43 a. The distribution function for Y is G, (y) = (%)n , 0 <y <86, so the distribution function
for U is given by

Fy(W)=PU <u)=P(Y,, <0u)=G,(bu)=u,0<y<1.
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8.44

8.45

8.46

Y
b. (Similar to Example 8.5) We require the value a such that P((T”) < aj = Fu(a) = .95.

Therefore, a” = .95 so that a = (.95)"" and the lower confidence bound is [Yal(. 95) M,
2
a. F,(y)=P(Y <y)= jz(e Ot %y_g_ 0<y<0.

b. The distribution of U = Y/0 is given by
F,(W=PU <u)=P(Y <0u)=F,(6u)=2u—-u’=2u(l-u), 0 <u<1. Since this
distribution does not depend on 6, U = Y/0 is a pivotal quantity.

c. Set P(U <a) =Fy(a) = 2a(1 — a) = .9 so that the quadratic expression is solved at
a=1-+/.10 =.6838 and then the 90% lower bound for 6 is Y/.6838.

Following Ex. 8.44, set P((U>b)=1-Fy(b)=1-2b(1 —b)=.9, thush=1- /.9 =
.05132 and then the 90% upper bound for 0 is Y/.05132.

Let U =2Y/0 and let my(t) denote the mgf for the exponential distribution with mean 6.

Then:

a. m,(t)=EE"Y)=E€™'")=m,(2t/0)=(1-2t)"". This is the mgf for the chi-square
distribution with one degree of freedom. Thus, U has this distribution, and since the
distribution does not depend on 6, U is a pivotal quantity.

b. Using Table 6 with 2 degrees of freedom, we have
P(.102587 <2Y /6<5.99147)=.90.

So, ( 2t ) represents a 90% CI for 6.

5.99147 > 102587

c. They are equivalent.

8.47 Note that for all i, the mgf for Yjis m, (t)=(1-6t)"", t < 1/0.

a. LetU= 22::1Yi /0. The mgf for U is

m, () =EEY)=[m, /o) =(1-2t)",t<1/2.
This is the mgf for the chi—square distribution with 2n degrees of freedom. Thus, U
has this distribution, and since the distribution does not depend on 6, U is a pivotal
quantity.

b. Similar to part b in Ex. 8.46, let 3,5, %45 be percentage points from the chi-square
distribution with 2n degrees of freedom such that

P(x?w <23 Y /0 <y s ): 95.
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So, 22::1Yi 22::1Yi

represents a 95% CI for 0.

X.2975 , Xi)zs
c. TheClis 2(7)(4.77) , 2(7)(4.77) or (2.557, 11.864).
26.1190 ~ 5.62872

(Similar to Ex. 8.47) Note that for all i, the mgf for Yiis m, (t)=(1-B)7, t < 1/B.
a. LetU=2)"Y,/B. ThemgfforUis
m, (1) =E")=[m, 2t/p)]' =1 -2t)*",t<1/2.
This is the mgf for the chi—square distribution with 4n degrees of freedom. Thus, U

has this distribution, and since the distribution does not depend on 6, U is a pivotal
quantity.

b. Similar to part b in Ex. 8.46, let 3.5, % 5,5 be percentage points from the chi-square
distribution with 4n degrees of freedom such that

P(x_2975 <23 Y /B<oins ): 95.

So, 2ZinzlYi 2 inzlYi

represents a 95% CI for (3.

X.2975 ’ X%zs
c. TheClis [2(5)(5'39) , 2(5)(5'39)j or (1.577, 5.620).
34.1696 = 9.59083

a. If o = m (a known integer), then U = ZZ::IYi /B still a pivotal quantity and using a

mgf approach it can be shown that U has a chi—square distribution with mn degrees of
freedom. So, the interval is

22::1 Yi 2 inzlYi

2 T 5
Xi—ar2 Xas2

b

where 7 ., %>, are percentage points from the chi-square distribution with mn
degrees of freedom.

b. The quantity U = Zin:lYi /B is distributed as gamma with shape parameter cn and scale

parameter 1. Since C is known, percentiles from this distribution can be calculated from
this gamma distribution (denote these as y,_,,,, Y./, ) so that similar to part a, the CI is

Zin:IYi Zin:IYi

2
Yicarz  Yar2

c. Following the notation in part b above, we generate the percentiles using the Applet:
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V75 = 16.74205, y 1,5 = 36.54688

10(11.36) 10(11.36)
36.54688°16.74205

Thus, the Cl is ( j or (3.108, 6.785).

8.50 a.-.1451
b. .2251
c. Brand A has the larger proportion of failures, 22.51% greater than Brand B.
d. Brand B has the larger proportion of failures, 14.51% greater than Brand A.
e. There is no evidence that the brands have different proportions of failures, since we are
not confident that the brand difference is strictly positive or negative.

8.51 a.-f. Answers vary.

8.52 a.-C. Answers vary.
d. The proportion of intervals that capture p should be close to .95 (the confidence level).

8.53 a.i. Answers vary. ii. smaller confidence level, larger sample size, smaller value of p.
b. Answers vary.

8.54 a. The interval is not calculated because the length is zero (the standard error is zero).
b.-d. Answers vary.
e. The sample size is not large (consider the validity of the normal approximation to the
binomial).

8.55 Answers vary, but with this sample size, a normal approximation is appropriate.

8.56 a. With zo; =2.326, the 98% Cl is .45+ 2.326,/- 23 or 45+ 041.

800
b. Since the value .50 is not contained in the interval, there is not compelling evidence
that a majority of adults feel that movies are getting better.

8.57  With zgos = 2.576, the 99% interval is .51 +2.576,/352 or .51 +.04. We are 99%
confident that between 47% and 55% of adults in November, 2003 are baseball fans.

8.58 The parameter of interest is L = mean number of days required for treatment. The 95%
Cl is approximately ¥+ 2, (s/+/n ), or 5.4 £ 1.96(3.1/~/500 ) or (5.13, 5.67).

8.59 a. With zgs = 1.645, the 90% interval is .78 +1.645,/ 22 or 78 + .021.

b. The lower endpoint of the interval is .78 —.021 = .759, so there is evidence that the
true proportion is greater than 75%.

8.60 . With zgos = 2.576, the 99% interval is 98.25+2.576(.73/4/130 ) or 98.25 = .165.
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b. Written as an interval, the above is (98.085, 98.415). So, the “normal” body
temperature measurement of 98.6 degrees is not contained in the interval. It is possible
that the standard for “normal” is no longer valid.

With 755 = 1.96, the 95% Cl is 167.1—140.9 +1.96,/ 232 o1 (15 46, 36.94),
With z o5 = 2.576, the approximate 99% CI is 24.8 —21.3 + 2.576,/ % 1) + & 1) or

(—1.02, 8.02). With 99% confidence, the difference in mean molt time for normal males
versus those split from their mates is between (—1.02, 8.02).

a. With zgps = 1.96, the 95% interval is .78 £1.96/ =22 or .78 +.026 or (.754, .806).

b. The margin of error reported in the article is larger than the 2.6% calculated above.
Assuming that a 95% CI was calculated, a value of p = .5 gives the margin of error 3.1%.

a. The point estimates are .35 (sample proportion of 18-34 year olds who consider
themselves patriotic) and .77 (sample proportion of 60+ year olds who consider
themselves patriotic. So, a 98% CI is given by (here, z; = 2.326)

77— 354 2.326,/T2 1 B op 47 & 10 or (.32, .52).

150

b. Since the value for the difference .6 is outside of the above CI, this is not a likely
value.

a. The 98% Cl is, with zo; = 2.326, is
18 =124 2,326,821 061 117 or (—.057, .177).

b. Since the interval contains both positive and negative values, it is likely that the two
assembly lines produce the same proportion of defectives.

a. With z o5 = 1.645, the 90% CI for the mean posttest score for all BACC students is
18.5+1.645(32 ) or 18.5 + .82 or (17.68, 19.32).

b. With 2,025 = 1.96, the 95% CI for the difference in the mean posttest scores for BACC
and traditionally taught students is (18.5—16.5) +1.96 S22 4+ 997 12 0+ 1.14.

c. Since 0 is outside of the interval, there is evidence that the mean posttest scores are
different.

a. The 95% Clis 7.2 +1.96,/58 or 7.2+ .75 or (6.45, 7.95).
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8.68

8.69

8.70

8.71

8.72

b. The 90% CI for the difference in the mean densities is (7.2 —4.7) £1.645,/38 + 32 or
2.5+ 74 or (1.76, 3.24).

C. Presumably, the population is ship sightings for all summer and winter months. It is
quite possible that the days used in the sample were not randomly selected (the months
were chosen in the same year.)

a. Recall that for the multinomial, V(Y;) = npigi and Cov(Y;,Yj) =— npip; for i #j. Hence,
VY, =Y,)=V(,)+V(,)-2Cov(Y,,Y,)=np,q, + np,q, + 2np, p,.

b. Since P, — P, =, using the result in part a we have

V(ﬁ1 - b2)=ﬁ(p1q1 + p,Q, + 2 P, pz)'
Thus, an approximate 95% CI is given by
ﬁl - ﬁz i1'96\/%(p1q1 + pzqz +2r)1 pz)
Using the supplied data, this is
06-.16+ 1.96%%(.06(.94) +.16(.84) + 2(.06)(.16)) =—.10+£ .04 or (—14, —.06).

For the independent counts Y, Y,, Y3, and Y4, the sample proportions are p, =Y, /n, and
V(p,)=pq;/n, fori=1,2,3,4. The interval of interest can be constructed as
(P — ) —(Py — P,) £ 196NV [(P, — B,) — (P, — P,)] -
By independence, this is
(s = P~ (P, = P,) £1.96,[1[ 0, + P, + P4, + P,0, ]
Using the sample data, this is
(.69 —-.65)—-(25-.43)% 1.96\/ﬁ[.65(.35) +.43(.57) +.69(.31) +.25(.75)
or.22 + .34 or (—.12, .56)

As with Example 8.9, we must solve the equation 1.96\@ =B forn.

a. With p=.9 and B=.05, n=139.
b. Ifp is unknown, use p =.5 so n=385.

With B=2, 6 = 10, n = 46°/B>, so nh = 100.

a. Since the true proportions are unknown, use .5 for both to compute an error bound
(here, we will use a multiple of 1.96 that correlates to a 95% CI):

1.96,/36) | 36) = (44,

b. Assuming that the two sample sizes are equal, solve the relation

1,645,263 4 5 — 2

so n = 3383.
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8.73  From the previous sample, the proportion of ‘tweens who understand and enjoy ads that
are silly in nature is .78. Using this as an estimate of p, we estimate the sample size as

2.576,/ 722 = 02 or n=2847.

8.74 WithB=.1ando=.5,n=(1.96)°6%/B? so n=97. Ifall of the specimens were selected
from a single rainfall, the observations would not be independent.

8.75 Here, 1.6451/%2 + ‘;—f =.1,but 6; =c3 =.25, n; =N, = n, so sample n = 136 from each

location.

8.76  For n; = n, = n and by using the estimates of population variances given in Ex. 8.61, we
can solve 1.645,[ZV06" _ 546 that n = 98 adults must be selected from each region.

8.77  Using the estimates P, =.7, p, =.54, the relation is 1.645,/2349 = 05 5o n = 497.

8.78 Here, we will use the estimates of the true proportions of defectives from Ex. 8.65. So,
with a bound B = (.2)/2 = .1, the relation is 1.96,/232:28) — 146 n=098,

8.79  a. Here, we will use the estimates of the population variances for the two groups of

students:
2.576,BOL 4 (6567 _ 5

so N =2998 students from each group should be sampled.
b. For comparing the mean pretest scores, S; = 5.59, S, = 5.45 so 2.576#@ + @ =.5

and thus n = 1618 students from each group should be sampled.

c. If it is required that all four sample sizes must be equal, use N = 2998 (from part a) to
assure an interval width of 1 unit.

8.80 The 95% CI, based on a t—distribution with 21 — 1 =20 degrees of freedom, is
26.6 +2.086 (7.4/\/5 ) =26.6 +3.37 or (23.23, 29.97).

8.81 The sample statistics are ¥ = 60.8,5s=7.97. So, the 95% CI is
60.8 +2.262(7.97/3/10) = 60.8 £ 5.70 or (55.1, 66.5).

8.82 a. The 90% CI for the mean verbal SAT score for urban high school seniors is
505 + 1.729(57/+/20 ) = 505 + 22.04 or (482.96, 527.04).
b. Since the interval includes the score 508, it is a plausible value for the mean.

c. The 90% CI for the mean math SAT score for urban high school seniors is
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495 = 1.729(69/+/20 ) = 495 + 26.68 or (468.32, 521.68).

The interval does include the score 520, so the interval supports the stated true mean
value.

8.83  a. Using the sample—sample CI for p; — b, using an assumption of normality, we
calculate the pooled sample variance

8’2) — 9(3.92) 1—;9(3.98) — 15.6034
Thus, the 95% CI for the difference in mean compartment pressures is
14.5-11.1 + 2.101,/15.6034(%5 + 1) = 3.4 3.7 or (.3, 7.1).

b. Similar to part a, the pooled sample variance for runners and cyclists who exercise at
80% maximal oxygen consumption is given by

Sfﬁ _ 9(3.49)2;39(4‘95)2 ~18.3413.
The 90% CI for the difference in mean compartment pressures here is
12.2-11.5 + 1.734,/18.3413(% + ) =.7 +3.32 or (-2.62, 4.02).

c. Since both intervals contain 0, we cannot conclude that the means in either case are
different from one another.

8.84  The sample statistics are § =3.781, s =.0327. So, the 95% CI, with 9 degrees of
freedom and t g5 = 2.262, is
3.781 + 2.262(.0327/@) =3.781 £.129 or (3.652, 3.910).

8.85 The pooled sample variance is s = 156196 _ 51 647 . Then the 95% CI for p; — py is
11-12£1.96,/51.647(% + 55) =—1+4.72 or (-5.72, 3.72)

20
(here, we approximate t s with z 25 = 1.96).

8.86 a. The sample statistics are, withn =14, y = 0.896, s =.400. The 95% CI for pn = mean
price of light tuna in water, with 13 degrees of freedom and t s =2.16 is
896 + 2.16(.4/@3 — 896+ 231 or (.665, 1.127).

b. The sample statistics are, withn=11, ¥ =1.147,s=.679. The 95% CI for p = mean
price of light tuna in oil, with 10 degrees of freedom and t o5 =2.228 is
1147 £ 2.228(679/11) = 1.147 £ 456 or (691, 1.603).

This CI has a larger width because: S is larger, n is smaller, t,, is bigger.

8.87 a. Following Ex. 8.86, the pooled sample variance is s; = BN — 291, Then the
90% CI for p; — wo, with 23 degrees of freedom and tos = 1.714 is
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(.896—1.147)+1.714,/291(L + L) =—251 + 373 or (624, .122).

b. Based on the above interval, there is not compelling evidence that the mean prices are
different since 0 is contained inside the interval.

The sample statistics are, withn=12, ¥y =9,s=6.4. The 90% CI for p = mean LC50
for DDT is, with 11 degrees of freedom and t s = 1.796,
9+ 1.796 (6.4/@) =9+3.32 0r (5.68, 12.32).

a. For the three LC50 measurements of Diazinon, ¥ =3.57,s=3.67. The 90% CI for
the true mean is (2.62, 9.76).

b. The pooled sample variance is s = 6422657 _ 36 6. Then the 90% CI for the
difference in mean LC50 chemicals, with 15 degrees of freedom and t s = 1.771, is
(9-3.57)£1.771J36.6(55 + %) =5.43 £ 6.92 or (-1.49, 12.35).

We assumed that the sample measurements were independently drawn from normal
populations with 6| = ;.

a. For the 95% CI for the difference in mean verbal scores, the pooled sample variance is

2 2
Sf) = UV ) —1894.5 and thus

446 — 534 £ 2.048 ,/1894.5(% ) =—88 +32.55 or (—120.55, —55.45).

b. For the 95% CI for the difference in mean math scores, the pooled sample variance is
52 = MOV 2 _ 9976 5 and thus
" :

28
548 - 517+ 2.04842976.5‘%; =31+40.80 or (-9.80, 71.80).

c. At the 95% confidence level, there appears to be a difference in the two mean verbal
SAT scores achieved by the two groups. However, a difference is not seen in the math
SAT scores.

d. We assumed that the sample measurements were independently drawn from normal
populations with ¢; = 5.
Sample statistics are:

Season sample mean sample variance sample size

spring 15.62 98.06 5
summer 72.28 582.26 4

The pooled sample variance is s =*C022CR220 — 305 57 and thus the 95% CI is
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15.62 —72.28 £2.365,/305.57(+ + 1) =—56.66 + 27.73 or (—84.39, —28.93).

It is assumed that the two random samples were independently drawn from normal
populations with equal variances.

8.92  Using the summary statistics, the pooled sample variance is s; =222%2 = 0016 and

so the 95% ClI is given by
22—-.17+2.365,/.0016(5 + %) =.05+.063 or (—.013, .113).

8.93 a. Since the two random samples are assumed to be independent and normally
distributed, the quantity 2X +Y is normally distributed with mean 2p1; + i, and variance
(4+2)o®. Thus, is o* is known, then 2X +VY = 1.966,/4 + 2 is a 95% CI for 2y, + .

b. Recall that (1/ cz)zi"zl(xi — X)? has a chi-square distribution with n — 1 degrees of
freedom. Thus, [1/(362)]221 (Y, =Y)* is chi-square with m — 1 degrees of freedom and

the sum of these is chi—square with n + m — 2 degrees of freedom. Then, by using
Definition 7.2, the quantity

T= 2)?+Y__(2M1 +1,)

~ [4 3
Gqlr+ o , Where

&2 = Zinzl(xi -X)’ +%221(Yi =Yy’

n+m-2

Then, the 95% CI is given by 2X +Y +t,,.6

Sls
+
3w

. 4 I lle pivotal qualltity iS T - Yl YZ 1( : 1 2)
8 9 S 4 4+ L
P n

N,

, which has a t-distribution w/ ny +n, — 2

degrees of freedom. By selecting t, from this distribution, we have that P(T <t,) =1 —a.
Using the same approach to derive the confidence interval, it is found that

NV _Y 1 1
Yl —Y2 itaSp ”_1+E

is a 100(1 — )% upper confidence bound for p; — py.

8.95 From the sample data, n =6 and s> = .503. Then, x>, = 1.145476 and x>, = 11.0705
with 5 degrees of freedom. The 90% CI for ¢ is (15 708 » 1,51(455(2;37)6) or (227,2.196). We are
90% confident that 6° lies in this interval.

8.96 From the sample data, n =10 and s> = 63.5. Then, 32, =3.3251 and 2, = 16.9190 with
9 degrees of freedom. The 90% CI for 6* is (L&, 18 ) or (33.79, 171.90).
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a. Note that 1—o = P((” DS® sy a) P(“‘X”S ) Then, (” DS is a 100(1-0)% upper

1-a

confidence bound for 2.

b. Similar to part (a), it can be shown that (”%Sz is a 100(1-a)% lower confidence bound

for o°.

(n— 1)s

Xa/z

2
The confidence interval for o is ((” Ds” ) so since S* > 0, the confidence interval
1 al2

for 6 is simply [‘/(; ns® ,/(”xl)sz)
Following Ex. 8.97 and 8.98:

a. 100(1 — a)% upper confidence bound for o: ,l”‘)}i .

b. 100(1 — a)% lower confidence bound for o: ,I(”_X;jsz .

o

With n = 20, the sample variance s> = 34854.4. From Ex. 8.99, a 99% upper confidence
bound for the standard deviation o is, withy 5, = 7.6327,

19(348544) _ 5gyq 55,

7.6327
Since this is an upper bound, it is possible that the true population standard deviation is
less than 150 hours.

With n = 6, the sample variance s° = .0286. Then, y2, = 1.145476 and x>, = 11.0705

with 5 degrees of freedom and the 90% CI for 6” is
(5(.0286) 5(.0286)) = (.013 .125).

11.0705 > 1.145476

With n = 5, the sample variance s* = 144.5. Then, x2,; =.20699 and x>, = 14.8602

with 4 degrees of freedom and the 99% CI for o is
(ases) s0449)) — (38 90, 2792.41).

14.8602 > .20699

With n = 4, the sample variance s° = 3.67. Then, x>, =.351846 and y, = 7.81473 with

3 degrees of freedom and the 99% CI for ” is
(3(3,67) 3(3.67)) = (1.4,31.3).

7.81473 > 351846
An assumption of independent measurements and normality was made. Since the
interval implies that the standard deviation could be larger than 5 units, it is possible that
the instrument could be off by more than two units.

The only correct interpretation is choice d.
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8.105 The difference of the endpoints 7.37 — 5.37 = 2.00 is equal to 220(/2\/% = 22(1/2\/%.

Thus, z,, = 2.04 so that a/2 = .0207 and the confidence coefficient is 1 — 2(.0207) =
.9586.

8.106 a. Define: p; = proportion of survivors in low water group for male parents
p2 = proportion of survivors in low nutrient group for male parents

Then, the sample estimates are p,= 522/578 =.903 and fp,=510/568 = .898. The 99%
CI for the difference p; — p; is

903 —.898 + 2.576\/'903('097) + 2882 = 005 +.0456 or (—.0406, .0506).

578 568

b. Define: p; = proportion of male survivors in low water group
p> = proportion of female survivors in low water group

Then, the sample estimates are p,=522/578 =.903 and p,=466/510 =.914. The 99%
CI for the difference p; — p2 is

903 — 914 +2.576, /280N | I9K6) —_ (1] + 045 or (056, .034).

8.107 With B=.03 and a = .05, we use the sample estimates of the proportions to solve
1 96\/‘903('097) N 898(.102) _ 03

The solution is N = 764.8, therefore 765 seeds should be used in each environment.

8.108 Ifit is assumed that p = kill rate = .6, then this can be used in the sample size formula
with B = .02 to obtain (since a confidence coefficient was not specified, we are using a

multiple of 2 for the error bound)
02=2,/24

n

So, n = 2400.

8.109 a. The sample proportion of unemployed workers is 25/400 = .0625, and a two—standard—
error bound is given by 2,/%Z25) = (0242,
b. Using the same estimate of p, the true proportion of unemployed workers, gives the
relation 2,/923) = 02 This is solved by n = 585.94, so 586 people should be

sampled.

8.110 For an error bound of $50 and assuming that the population standard deviation ¢ = 400,
the equation to be solved is
19642 =50.
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This is solved by n = 245.96, so 246 textile workers should be sampled.

Assuming that the true proportion p = .5, a confidence coefficient of .95 and desired error
of estimation B = .005 gives the relation

1.964/2 = 005.

n

The solution is n = 38,416.

The goal is to estimate the difference of
p1 = proportion of all fraternity men favoring the proposition
p2 = proportion of all non—fraternity men favoring the proposition

A point estimate of p; — Pz is the difference of the sample proportions:
300/500 — 64/100 = .6 — .64 = —.04.
A two—standard—error bound is

6(4) | 64(36) _
2\ % T e = -106.

Following Ex. 112, assuming equal sample sizes and population proportions, the equation
that must be solved is

Here, n = 768.

The sample statistics are Y =795 and s = 8.34 with n =5. The 90% CI for the mean
daily yield is
795 +2.132(8.34/+/5 ) = 795 + 7.95 or (787.05, 802.85).

It was necessary to assume that the process yields follow a normal distribution and that
the measurements represent a random sample.

Following Ex. 8.114 w/ 5 — 1 = 4 degrees of freedom, y35, =.710721 and ¥ 5, = 9.48773.

The 90% CI for o is (note that 4s* = 278)
(5228, -235-) or (29.30, 391.15).

9.48773 > 710721

The 99% CI for p is given by, with 15 degrees of freedom and t yos = 2.947, is
79.47 +2.947(25.25//16 ) = 79.47 £ 18.60 or (60.87, 98.07).

We are 99% confident that the true mean long—term word memory score is contained in
the interval.

The 90% CI for the mean annual main stem growth is given by
113=1.746(3.4/4/17) = 11.3  1.44 or (9.86, 12.74).

The sample statistics are Y =3.68 and s = 1.905 with n=6. The 90% CI for the mean
daily yield is
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3.68£2.015(1.905//6) = 3.68 £ 1.57 or (2.11, 5.25).

8.119 Since both sample sizes are large, we can use the large sample CI for the difference of
population means:

75—72+£1.96,2C + 5 =3 +3.63 or (—63, 6.63).

8.120 Here, we will assume that the two samples of test scores represent random samples from
normal distributions with 6, = 65. The pooled sample variance is s; = 22200 =62.74 .

The 95% CI for p; — s is given by
64 — 69 £2.069,/62.74(L + &) =—5+ 6.60 or (—11.60, 1.60).

8.121 Assume the samples of reaction times represent random sample from normal populations
with 61 = 6. The sample statistics are: Y, = 1.875, s’ =.696, y, =2.625, s; =.839.
The pooled sample variance is Sf, = NLOOTED) = 7675 and the 90% CI for py — p, is

1.875-2.625 + 1.761,/.7675(3) =—.75 .77 or (-1.52, .02).

8.122 A 90% CI for p = mean time between billing and payment receipt is, with z s = 1.645
(here we can use the large sample interval formula),

39.121.645(17.3/4/100 ) = 39.1 + 2.846 or (36.25, 41.95).

We are 90% confident that the true mean billing time is contained in the interval.

8.123 The sample proportion is 1914/2300 = .832. A 95% CI for p = proportion of all viewers
who misunderstand is

832 £1.96,/22L%) = 832+ 015 or (.817, .847).

8.124 The sample proportion is 278/415 = .67. A 95% CI for p = proportion of all corporate
executives who consider cash flow the most important measure of a company’s financial
health is

67 +£1.96,/22) = 67 +.045 or (.625, .715).

8.125 a. From Definition 7.3, the following quantity has an F—distribution with n; — 1
numerator and N, — 1 denominator degrees of freedom:

\-Ds?
0D s o
= =X —=
~1)s2 2 2
7(”201;52 /(n2 1) S, o
b. By choosing quantiles from the F—distribution with n; — 1 numerator and n, — 1
denominator degrees of freedom, we have
P(F_,,<F<F, ,)=1-a.
Using the above random variable gives

S o S? o S2
P(Fl—ot/Z <—1X—§< Fa/Z)ZP(S_ZzFl_a/Z <—2<—22Fa/2)=1—(x.
1

2 2
2 1 O, 1
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Thus,

S; S:
[Sz I:l a/2° Sz Fa/Zj

An alternative expression is given by the following. Let F', denote the upper—a critical

is a 100(1 — a)% CI for 63 /c;.

value from the F—distribution with v; numerator and v, denominator degrees of freedom.
Because of the relationship (see Ex. 7.29)

1
Vz’a B FVVZ(X

Vi

9

a 100(1 — )% CI for 5 /o’ is also given by
2 2
st s
Fv\l/?a Sl ” S1

Using the CI derived in Ex. 8.126, we have that F; ,; = 9; =4.03. Thus, the CI for

9,.025

the ratio of the true population variances is (i - %,%) = (.085, 1.39).

It is easy to show (e.g. using the mgf approach) that Y has a gamma distribution with
shape parameter 100¢, and scale parameter (.01)B. In addition the statistic U=Y /B isa

pivotal quantity since the distribution is free of B: the distribution of U is gamma with
shape parameter 100c, and scale parameter (.01). Now, E(U) = ¢, and V(U) = (.01)c, and
by the Central Limit Theorem,

U-c, Y/B-g,

1fe, e,

has an approximate standard normal distribution Thus,

ot e

Isolating the parameter 3 in the above inequality yields the desired result.

a. Following the notation of Section 8.8 and the assumptions given in the problem we
know that Y_1 - Y_2 is a normal variable with mean p; — p, and variance - k“‘ . Thus, the
standardized variable Z" as defined indeed has a standard normal distributlon.

(nl B 1)812

5 and U, =& have independent chi—square

b. The quantities U, =
(O3 kGl

distributions with n; — 1 and n, — 1 degrees of freedom (respectively). So, W' = U, + U,
has a chi—square distribution with n; + n, — 2 degrees of freedom.
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*

c. By Definition 7.2, the quantity T" = Z follows a t—distribution with

WU+, —2)

n; + n, — 2 degrees of freedom.

d. A 100(1 — a0)% CI for p; — p, is given by Y_1 —Y_2 i—ta/ZS: nil +% , where g, 1s the
upper—o/2 critical value from the t—distribution with n; + n, — 2 degrees of freedom and

S, is defined in part (c).

e. If k=1, it is equivalent to the result for 6, = o,.

8.129 Recall that V(S%) = 22,

a. V(S8'%)=V(5l8?) =20
b. The result follows from V($) =V (2152) = (=1)’V(S?) <V/(S?) since 2L <1.
8.130 Since S’ is unbiased,
MSE(S?) = V(S = 2¢* . Similarly,
MSE(S2)=V/(S") +[B(S") = 20he’ 4 (1167 _ g2 f = b’

By considering the ratio of these two MSEs, it can be seen that S'* has the smaller MSE
and thus possibly a better estimator.

8.131 Define the estimator6° = Czin:l (Y, =Y)?. Therefore, E(6%)=c(n— 1)c” and
V(6%)=2c*(n—1)c" so that

MSE(6%) =2¢*(n - 1)o” + [c(n — 1)o” — 6]

Minimizing this quantity with respect to ¢, we find that the smallest MSE occurs when
c=-L

n+l *
8.132 a. The distribution function for Y is given by

Ry, (V) =P, <y)=[F(Y)]" {%j ,0<y<0.

b. The distribution of U = Y/0 is
Fo(uU)=PU <u)=P(Y, <6Bu)=u™,0<u<l.
Since this distribution is free of 6, U = Y (/0 is a pivotal quantity. Also,

P(k<Y(n)/6<1)=P(ko<Y(n)<6)=F, (6)-F, (k8)=1-k™.

C. 1. Using the result from part b withn=5and c=2.4,
95=1- (k)" sok=.779
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ii. Solving the equations .975 =1 — (k,)"* and .025 =1 — (k, )"*, we obtain
ki =.73535 and k, = .99789. Thus,

Y(5) Y(5)
P(73535<Y,,/6<.99789)=P| —C_<p<—C |-
99789 " 73535

Yis) Yis) .
0, , is a 95% ClI for 6.
99789 " .73535

8.133 We know that E(S7)=0" and V(S})=2% fori=1,2.

a E(S?)- (n, —DE(S]) +(n, —DE(S;) _ sl
' P n +n, -2
b. V(SZ):(nl ~DV(SH+(n, -DV(ES;) 26 .
P (n, +n, -2y n +n,—2

8.134 The width of the small sample Cl is 2t_,, (%), and from Ex. 8.16 it was derived that

s 2rmn/2
E(S)= & tinns - Thus,
" T(n/2)

E(zta/z f) 23/2ta/2(m T[(n— 1)/2]

8.135 The midpoint of the CI is given by M = %((” DS 4 (st ) Therefore, since E(S) = °, we

Xl ol2 Xu/z

have

_ {(n 1o (n Ho? | _ (nfl)cz{ 2
E(M)_%\Xl /2 Xé/z )_ 2 \Xlzl/z +F1,2)¢G )
8.136 Consider the quantity Y, —Y. Since Yy, Y, ..., Yn, Yp are independent and identically
distributed, we have that
EY,-Y)=pn—p=0
V(Y,-Y)=0c’+c”/n=c"(m).

Therefore, Z = has a standard normal distribution. So, by Definition 7.2,

n+1

SEVar
Y, =Y
N _Yp—Y_

(n-1S* Sy
c’(n—-1)
has a t—distribution with n — 1 degrees of freedom. Thus, by using the same techniques as

used in Section 8.8, the prediction interval is
Y +t,,S /2,
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where 1y, is the upper—o/2 critical value from the t—distribution with n — 1 degrees of
freedom.
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9.1 Refer to Ex. 8.8 where the variances of the four estimators were calculated. Thus,
eff(0,,0,)=1/3 eff(0,,0,)=2/3 eff(0,,0,) = 3/5.

9.2 a. The three estimators a unbiased since:

E(fi,)= H(E(YV) +E(Y,))=t(n+p) =p
X (n-2)u
E =pu/d+——+u/d=
() =p 2n-2) n/4=p
E(i,)=E(Y)=n.
b. The variances of the three estimators are

V(i) =4(c" +0%) =10’

2
V(fi,)=c>/16 + M > /16=c>/8 + —2
4(n—2)? 4(n—2)
V(ii,)=0"/n
n2
Thus, eff((1,,[1,)= ,eff((1, i1,) =n/2.
u (Hy,1,) 8(n—2) (By Q)

9.3 a. E( él y=E(Y )—1/2=0+1/2—-1/2=6. From Section 6.7, we can find the density
function of éz =Ym: 9,(y)=n(y-0)"",0<y<0+ 1. From this, it is easily shown
that E(0,) = E(Y) —n/(n+ 1) = .
b. V(8,)=V(Y ) =c%n=1/(12n). With the density in part &, V(8,) = V(Yn) =

. n_
(n+2)(n+1)? *

Thus, eff( 6, ,0,) = —12

(n+2)(n+1)* °

9.4 See Exercises 8.18 and 6.74. Following those, we have that V( é1 )=(n+ 1)2V(Y(n)) =
1202, Similarly, V(6,) = (&L V(Yn) =

as given.

n(m) —1_9”. Thus, the ratio of these variances is

9.5  From Ex. 7.20, we know S is unbiased and V(S%) = V(67) = 22, For 62, note that Y, —

Y, Y.
Y, is normal with mean 0 and variance o’ So, ( R 2)

freedom and E(62) = 6%, V(62) = 26", Thus, we have that eff(6;,63)=n— 1.

is chi—square with one degree of

9.6 Both estimators are unbiased and V(?AL1 )=MN2 and V( A ,) =Mn. The efficiency is 2/n.

9.7  The estimator él is unbiased so MSE( él ) =V( él) =0°. Also, éz =Y is unbiased for 0
(0 is the mean) and V(0,) = */n = 6%/n. Thus, we have that eff(6,,6,) = 1/n.
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9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

9.19

a. It is not difficult to show that % = -2, 50 I(w) = o”/n, Since V(Y )=c’/n, ¥ is

an efficient estimator of .

b. Similarly, % =—% and E(-Y/A%) = I/L. Thus, I()) =M/n. By Ex. 9.6, Y isan

efficient estimator of A.

a. Xe=1.
b.-e. Answers vary.

a.-b. Answers vary.

a.-b. Answers vary.
c. The simulations are different but get close at n = 50.

a.-b. Answers vary.

a. Sequences are different but settle down at large n.
b. Sequences are different but settle down at large n.

a. the mean, 0.
b.-c. the variability of the estimator decreases with n.

Referring to Ex. 9.3, since both estimators are unbiased and the variances go to 0 with as
n goes to infinity the estimators are consistent.

From Ex. 9.5, V(62) = 26" which is constant for all n. Thus, &2 is not a consistent
estimator.

In Example 9.2, it was shown that both X and Y are consistent estimators of p; and .,
respectively. Using Theorem 9.2, X — Y 1is a consistent estimator of p; — ;.

Note that this estimator is the pooled sample variance estimator Sf) withn;=n,=n. In
Ex. 8.133 it was shown that Sﬁ 1s an unbiased estimator. Also, it was shown that the
26" o’

n+n,-2 n-1

variance of Sz is . Since this quantity goes to 0 with n, the estimator

is consistent.

Given f(y), we have that E(Y) = 3% and V(Y) = m (Y has a beta distribution with
parameters o.= 0 and B = 1. Thus, E(Y )= +% and V(Y ) = m Thus, the

conditions are satisfied for Y to be a consistent estimator.
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Since E(Y) = np and V(Y) = npg, we have that E(Y/n) = p and V(Y/n) = pg/n. Thus, Y/n is
consistent since it is unbiased and its variance goes to 0 with n.

Note that this is a generalization of Ex. 9.5. The estimator &° can be written as
&2 :l (Yz _Y1)2 n (Y4 _Y3)2 n (Ye _Y5)2 R (Yn _Yn—l)z .
k 2 2 2 2
There are k independent terms in the sum, each with mean o” and variance 2¢".

a. From the above, E(6%) = (ko’)/k =°. So &7 is an unbiased estimator.
b. Similarly, V(%) = k(26*)/k> = 26*/k. Since k =n/2, V(&%) goes to 0 with n and &7 is
a consistent estimator.

Following Ex. 9.21, we have that the estimator A can be written as
xzi[m SO AU\ A\ A i

k 2 2 2 ’ 2
For Y, Yi_1, we have that:
ELY, —Yi)’]_ B = 2E(YDE(Y ) +E(Y) _ (A +2) =20 + (L +2)
2 - 2 B 2
VI(Y, =Y, ,)*] g VY2 +V(Y2) 201202 + 83
4 4 4

independent and non—negative (the calculation can be performed using the
Poisson mgf).

=\

=v, since Yjand Y; ;| are

a. From the above, E(A )= (K\)/k =\. So A is an unbiased estimator of A.
b. Similarly, V(% ) < ky/k?, where y < oo is defined above. Since k=n/2, V(A ) goes to 0
with nand A is a consistent estimator.

a. Note that fori=1,2, ...,k
E(Y, —Y,.,)=0 V(Y =Yy = 26° = E[(Yy _Yzm)z-

Thus, it follows from methods used in Ex. 9.23 that 6° is an unbiased estimator.

b.V(6*)= 12 ZLV [(Y, =Y, )] :ﬁ\/[(Yz —Y,)?1, since the Y’s are independent and

4k
identically distributed. Now, it is clear that V[(Y, —Y,)*]< E[(Y, = Y,)"], and when this
quantity is expanded, only moments of order 4 or less are involved. Since these were

assumed to be finite, E[(Y, —Y,)*] < and so V(6°)= ﬁv [(Y,-Y,)’] = Oasn— o,

C. This was discussed in part b.
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9.24

9.25

9.26

9.27

9.28

9.29

9.30

9.31

9.32

9.33

a. From Chapter 6, Z:;Yi2 is chi—square with with n degrees of freedom.

b. Note that E(W,)=1 and V(W,)=1/n. Thus,as n — oo, W, — E(W,)=1 in
probability.

a. Since E(Y;) =, Y; is unbiased.

b. P(JY, —p£1)=P(-1<Z <1)=.6826.

c. The estimator is not consistent since the probability found in part b does not converge
to unity (here, n = 1).

a. We have thatP(0 —e <Y, <0+¢)=F  (0+¢)-F, (0-¢).
e Ife>0, F,(0+¢)=1and F,(0-¢)=0. Thus, P(O-e<Y,  <0+¢)=1.
o Ife<0, F, (0+e)=1, F,(0-g)=(%)". So, P(O—-e<Y,, <0+&)=1-(%)".

b. The result follows from lim,_,, P(0—e<Y, <0+¢)=lim ll — (=) J: 1.

P(Y,, —0<e)=PO-e<Y, <0+e)=F,(0+&)~F,0-¢)=1-(1-%) =(&)".

0
But, lim (%)n =0for e <0. So, Y is not consistent.

P(Y,, ~Bl<e)=P@-c<Y, <B+&)=FyB+8)—F,B-e)=1-(L)". Since

lim, (&)un =0 for € >0, Y(;) 1s consistent.

P(Y.

Iim

0 —0Ke)=PO-c<Y, <0+e)=F,(0+¢)—F, (0—¢&)=1-(%)". Since

o (E&=2)" =0 fore>0, Y is consistent.
Note that Y is beta with p = 3/4 and o> = 3/5. Thus, E(Y ) =3/4 and V(Y ) = 3/(5n).
Thus, V(Y ) —» 0and Y converges in probability to 3/4.

Since Y is a mean of independent and identically distributed random variables with finite
variance, Y is consistent and Y converges in probability to E(Y ) = E(Y) = ap.

Notice that E(Y?) = _[ y? %dy = J2dy = o0, thus V(Y) = o and so the law of large
2 y 2
numbers does not apply.

By the law of large numbers, X and Y are consistent estimators of A; and A,. By

Theorem 9.2, )%? converges in probability to xlﬁ—‘kz . This implies that observed values of
the estimator should be close to the limiting value for large sample sizes, although the
variance of this estimator should also be taken into consideration.



www.elsolucionario.net

Chapter 9: Properties of Point Estimators and Methods of Estimation 185

9.34

9.35

9.36

9.37

9.38

Instructor’s Solutions Manual

Following Ex. 6.34, Y* has an exponential distribution with parameter 6. Thus, E(Y?) =6
and V(Y?) = 0. Therefore, E(W,) = 0 and V(W,) = 6*/n. Clearly, W, is a consistent
estimator of 6.

a E(Y,)=L(u+p+--+p)=p,so Y, is unbiased for p.
b.V(Y,)=L(c] +05 ++03)=L>" of.

c. In order for Y, to be consistent, it is required that V(Y,) — 0 as n — co. Thus, it must

be true that all variances must be finite, or simply max; {c;} <.

Let Xi, Xy, ..., Xn be a sequence of Bernoulli trials with success probability p. Thus, it is
seen that Y = Z_nﬂ X, . Thus, by the Central Limit Theorem, U = P — P has a limiting
: Pq

n

standard normal distribution. By Ex. 9.20, it was shown that p, is consistent for p, so it

makes sense that ¢, is consistent for ¢, and so by Theorem 9.2 f_(, is consistent for pqg.

Define W, = _| Pa, so that W, converges in probability to 1. By Theorem 9.3, the
Pq

..U P, — .
quantity —* = b P converges to a standard normal variable.

S

=

The likelihood function is L(p) = p™ (1 — p)" ™. By Theorem 9.4, Zin:l X, is sufficient
for p with g(Zx,, p)= p™ (1— p)"™ and h(y) = 1.

For this exercise, the likelihood function is given by

n . 2 B
L :;exp —Z““(zy—'zu) =2n)"*c™" exp{ ! (Zin_l y. —2uny + npz)}.
S _

(2n)n/26n 202

a. When o’ is known, Y is sufficient for p by Theorem 9.4 with

_ 2uny — nu’ _ /2 -n I <n
g(y,n)= eXP(T and h(y) = (2m) """ exp o2 Doy
b. When p is known, use Theorem 9.4 with
2wy’
267

o0 (Y ~w.0?) = (07) " exp and h(y) = (21) ">

c. When both p and 6” are unknown, the likelihood can be written in terms of the two
statistics Uy =Y Y, and Uy =) ;" with h(y) = (2r)"?. The statistics Y and S’

are also jointly sufficient since they can be written in terms of U; and U,.
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9.39 Note that by independence, U = ZLYi has a Poisson distribution with parameter nA.

Thus, the conditional distribution is expressed as
Hn }Lyi ei}L }Lzyi e7n}L

PY, =Y,....Y, =Y, =y Iy,!
P(Yl:yl""’Yn:yn|U:u): ( : yl y ): uy—n}\ = LY—nh :
PU =u) (nh)'e (nA)"e
u! u!
We have that Xy, =u, so the above simplifies to
u! iF

—— if Xy, =u

P(Y, = Y1, Yy =y, U =) =ty

0 otherwise

Since the conditional distribution is free of A, the statistic U = Zin=1Yi is sufficient for A.

9.40  The likelihood is L(8)=2"0"]]" v, exp(— > /e). By Theorem 9.4, U=>"" Y7 is
sufficient for 6 with g(u,0)=0"exp(-u/0) and h(y)=2"] ] v; .

n -1 n
9.41  The likelihood is L(a) = Oﬁfnmn“ [, yi)ﬂ eXp(— P /oc). By Theorem 9.4, U
n . . . n -1
=2 . Y" issufficient for a with g(u,a)=0o" exp(—u/a) and h(y) = mn(l Ii=l yi)m _

9.42  The likelihood function is L(p) = p"(1- p)? ™" = p"(1- p)”™". By Theorem 9.4, Y is
sufficient for p with g(y,p)= p"(1— p)”™" and h(y) = 1.

n -1 n
9.43  With 0 known, the likelihood is L(a)=0a"07"|] |, yi)a . By Theorem 9.4, U = H Y,

i=1 !

n —1
is sufficient for o with g(u,0)=a"0™™ ([ ], yi)ﬂ and h(y) = 1.

n (a+l)
9.44  With B known, the likelihood is L(a)=0a"B™(] |, yi) . By Theorem 9.4, U =
l_anlYi is sufficient for a with g(u,o) = a"B™ (u)‘(‘“” and h(y) = 1.

9.45 The likelihood function is
LO) =TT, f(y: 10)=[a@)[[T".beyo) fexpl- @3 d(y,)].
Thus, U = Zin:l d(Y;) is sufficient for 6 because by Theorem 9.4 L(0) can be factored

into, where u=Y"" d(y;), g(u,0)=[a(0)]" exp[- c(8)u] and h(y) = " b(y,)-

9.46  The exponential distribution is in exponential form since a(f) = c(B) = 1/ B, b(y) =1, and
d(y) =y. Thus, by Ex. 9.45, ZLYi is sufficient for B, and then sois Y .
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We can write the density function as f(y|a)=a0" exp[-(a—1)Iny]. Thus, the density

n _
has exponential form and the sufficient statistic is 2 In (Yi ) . Since this is equivalently
i=1

n

expressed as ln(l_[i:IYi ), we have no contradiction with Ex. 9.43.

We can write the density function as f(y|a)=ap” exp[—(a +1)Iny]. Thus, the density

has exponential form and the sufficient statistic is zin:l InY, . Since this is equivalently

expressed as In l—Iin:lYi , we have no contradiction with Ex. 9.44.

The density for the uniform distribution on (0, 0) is f(y|0)= % ,0<y<80. For this

problem and several of the following problems, we will use an indicator function to
specify the support of y. This is given by, in general, for a <b,

1 ifa<y<b
Ia,b(y): .

0  otherwise

Thus, the previously mentioned uniform distribution can be expressed as

(1) =5 1ou(¥).

The likelihood function is given by L(0) = BLHH:_I loo(Yi)= % loo(Yn))» since

Hin:l loo(Yi)=106(Yn). Therefore, Theorem 9.4 is satisfied with h(y) = 1 and
1

g(y(n)ae) = e_n Io,e(y(n)) .

(This problem could also be solved using the conditional distribution definition of
sufficiency.)

As in Ex. 9.49, we will define the uniform distribution on the interval (6;, 6,) as

1
f(y|0,,0,)=——I .
(y16,,6,) 0, -6) 6,0, ()
The likelihood function, using the same logic as in Ex. 9.49, is
1 n 1
L(6,,0,)=—————] | .| i)=——1 | m/ -
0,0 =555 | JERITRCD @ oy o Voo )
1

So, Theorem 9.4 is satisfied with g(y,,),Y,),0,,0,) =

h(y) = 1.

m Ielaez (y(l) ) I 0,.0, (y(n)) and
2 1

Again, using the indicator notation, the density is
f(y[6)=exp[-(y —0)]l,.(Y)
(it should be obvious that y < oo for the indicator function). The likelihood function is
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9.52

9.53

9.54

9.55

9.56

L(©) = expl- 37y + O[T 1o (v =expl- X7y + n0)1,.. (v,
Theorem 9.4 is satisfied with g(y,),0) = exp(ne)l ax(Yay) and h(y)= exp(— Zn y).

i=1
Again, using the indicator notation, the density is
3 2
f(y|0)==2-1

0° o,e(y) .

3I’1 n 2 . 3!’1 n i2
The likelihood function is L(8) = %Hi_l loo(Y;)= % lo6(Yn)) - Then,
Theorem 9.4 is satisfied with g(y,,,,0)=07"1,,(y,,) and h(y)= 3”1_[:1:1 y .

Again, using the indicator notation, the density is

20°
f(y|9)=7lem(y)-

The likelihood function is L(8)=2"0> ([T v T 1o (v) = 2" ([T, ¥ Mo (V)
Theorem 9.4 is satisfied with g(y,;,,0)=6"1,_(Yy,) and h(y)=2" in:1 y; )

Again, using the indicator notation, the density is
f(ylo,0)=ab™y*" loo(Y)-
The likelihood function is

n - n np-no n -l
L@, =0 [Ty, S T, lew 0 = @0 ([T, v, 1Yo
n n -1
Theorem 9.4 is satisfied with g(l_L:l Y. Yin»0,0)=a"07 O yi)a loo(Yn))»> h(y) =1
so that (Hin:lY i ,Y(n)) is jointly sufficient for o and 6.

Lastly, using the indicator notation, the density is
f(yleB)=apy 1 .(y).
The likelihood function is
—(o+1) —(o+1)

Lo =o' (T, T 0 =08 (T, .
—(a+l)

Theorem 9.4 is satisfied with g(l_[in:1 Y. Yays0LB) = o™ (Hin_l y

h(y) = 1 so that (Hin:lY i ,Y(l)) is jointly sufficient for a and P.

jlﬁ,oo(y(l)) , and

In Ex. 9.38 (b), it was shown that Zinzl(yi —p)? is sufficient for o®. Since the quantity

6% = %zinzl(yi —n)” is unbiased and a function of the sufficient statistic, it is the MVUE

2
of .
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Note that the estimator can be written as
o, S2+S2
&2 = 2x Y
2
where S, =ﬁz::l(xi -X), S, = inn:l (Y, =Y)* . Since both of these estimators

n-1

are the MVUE (see Example 9.8) for 6* and E(6%) = 6°, 6 is the MVUE for 6°.

2

From Ex. 9.34 and 9.40, Z:in:lYi2 is sufficient for 6 and E(Y?) = 0. Thus, the MVUE is
- s
0= %Zi:lYi )

Note that E(C) = E(3Y?) = 3E(Y?) = 3[V(Y) + (E(Y))*] = 3(L + A?). Now, from Ex. 9.39, it
was determined that ZinzlYi is sufficient for A, so if an estimator can be found that is
unbiased for 3(A + 1) and a function of the sufficient statistic, it is the MVUE. Note that
ZLIY- is Poisson with parameter N\, so
E(Y?)=V()+[E(Y)] =%+27, and
E(Y /n)=A/n.

Thus A% = E(Y 2)— E(Y /n) so that the MVUE for 3(A + A?) is

V2 =Y /in+Y =32 +¥(1-1)

a. The density can be expressed as f(y|0)=0exp[(0—1)Iny]. Thus, the density has

exponential form and — zin:l Iny, is sufficient for 0.

b. Let W =—InY. The distribution function for W is
F, (W)=PW <w)=P(-InY <w)=1-P(Y < e‘W):l—Le oy*'dy=1-e", w>0.

This is the exponential distribution function with mean 1/6.

C. For the transformation U = 20W, the distribution function for U is

F,(U)=PU <u)=PQ26W <u)=PW <1)=F,(&)=1-¢"?,u>0.
Note that this is the exponential distribution with mean 2, but this is equivalent to the
chi—square distribution with 2 degrees of freedom. Therefore, by property of independent

chi—square variables, ZGZ;Wi is chi—square with 2n degrees of freedom.

d. From Ex. 4.112, the expression for the expected value of the reciprocal of a chi—square

n 1
variable is given. Thus, it follows that E[(Zez_ IWJ }: 5 1 = . 1 5
i= n— n—

e. From part d, n-t __ n-l is unbiased and thus the MVUE for 6.

SIW, =3 Y,

i=1 !
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9.61

9.62

9.63

9.64

9.65

9.66

It has been shown that Yy is sufficient for 6 and E(Y ) = (ﬁ)@ Thus, (”T”)Y(n) is the
MVUE for 6.

o0

Calculate E(Y,,)) :Inye"”(y"e)dy :jn(u +0)e™du=0+L. Thus, Yi)— + is the MVUE
0 0

for 0.

a. The distribution function for Y is F(y)=y’/0°,0<y<0. So, the density function for

Y is T, (y)=n[F(Y)]"" f(y)=3ny"" /6", 0<y<0.

b. From part a, it can be shown that E(Y(y)) = $250. Since Y(y) is sufficient for 0, 22+ Y
is the MVUE for 0.

a. From Ex. 9.38, Y is sufficient for n. Also, sincec =1, Y has a normal distribution
with mean p and variance 1/n. Thus, E(Y *)=V (Y )+[E(Y)]> =1/n+ n’. Therefore, the

MVUE for *is Y* —1/n.
b. V(Y2 =1/n)=V(Y*)=E(Y*) = [E(Y )] =E(Y *)—[1I/n + p*]*. It can be shown that
E(Y*)= n%+%+ n (the mgf for Y can be used) so that

V(Y?=1/n)= n%+%+p4 ——[ln+p* = Q2 +4np*)/n’.

a. E(T)=P(T =1)=P(Y, =1,Y, =0) = P(Y, =1)P(Y, =0) = p(1 - p).

1Y, =0W = PEY, =1Y,=0,Y" Y, =w-1
b. P(T =1|W :w)=P(Yl LY, oW =w) _ P, =LY, 2 )

PW =w) PW =w)
1 n-2 w-l g n—(w-1)
P =P, = 0P Y =w-ny PUTP g PP
o _
W =w) (anW(l_p)nw
w
_ w(n —w)
nin-1)
c. E(T |W):P(T:1|W):Vl(n_WJ:( n Jﬂ(l—\’l}. Since T is unbiased by
n\n- n-1)n n

part (a) above and W is sufficient for p and so also for p(1 —p), nY (1-Y)/(n—1) is the
MVUE for p(1 — p).

a. i. The ratio of the likelihoods is given by

L(X’ p) _ pZXI (1 — p)n—Exi _ pZX. (1 _ p)—in z( p jZXi—Zyi
L(y|p) pzy' (1- p)“‘Zyi pzy. (1- p)—zyi - p




www.elsolucionario.net

Chapter 9: Properties of Point Estimators and Methods of Estimation 191
Instructor’s Solutions Manual

il IfZx; = Zy; , the ratio is 1 and free of p. Otherwise, it will not be free of p.

iii. From the above, it must be that g(Y,,...,Y,) = zin:lYi is the minimal sufficient

statistic for p. This is the same as in Example 9.6.

b. i. The ratio of the likelihoods is given by
L(X|9) Zn(H” )e—n exp(— Z” X2/9) H|1 [ p[_ (Z _Z y. )}
Ly 1) 2" ([T, v)0 " exp-3,v2/0) [T, e

ii. The above likelihood ratio will only be free of 0 if > " x’=>"" Y, so that

inzlYi2 is a minimal sufficient statistic for 0.

9.67 The likelihood is given by

1
L(ylu,62)= )n/ZGn X

o > i
(2n 267 '

The ratio of the likelihoods is
L(X |p,0°) { 1 n 2 n 2]}
Ly lio®) O 207 o W= 20, )
1 n n n n
eXp{_ ) Ei:l Xi2 - Zi:l yi2 o ZH(ZH Xi = Zi:l Yi )]}

This ratio is free of (1, °) only if both Z X' = z y. and Z_l , Zin:l Y, , SO

Zi:lYi and Zi:lYi form jointly minimal sufficient statistics for p and o°.

9.68 For unbiased estimators ¢;(U) and g,(U), whose values only depend on the data through
the sufficient statistic U, we have that E[g;(U) — g2(U)] = 0. Since the density for U is
complete, g;(U) — g2(U) = 0 by definition so that g;(U) = g2(U). Therefore, there is only
one unbiased estimator for 6 based on U, and it must also be the MVUE.

9.69 Itis easy to show that p= £ so that 6 =2 . Thus, the MOM estimator is 0=2C1

Since Y is a consistent estimator of i, by the Law of Large Numbers 0 converges in
probability to 6. However, this estimator is not a function of the sufficient statistic so it
can’t be the MVUE.

9.70  Since p = A, the MOM estimator of A is A=m/ =Y.

9.71  Since E(Y) = u! =0and E(Y?) = u}, = V(Y) = 6%, we have that 6 =m), =—Z” 2.
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9.72

9.73

9.74

9.75

9.76

9.77

9.78

9.79

9.80

Here, we have that p/ = pand p), =c”+p>. Thus, i=m/ =Y and 6> =m, -Y? =

O MAGE SRS IVERD S

Note that our sole observation Y is hypergeometric such that E(Y) = n6/N. Thus, the
MOM estimator of 6 is 6 =NY /n.

0
a. First, calculate p; =E(Y) = .[Zy(e —y)/0°dy =0/3. Thus, the MOM estimator of 0 is
0

6=3Y.
b. The likelihood is L(0)=2"0"" Hi”zl(e —Y;). Clearly, the likelihood can’t be factored

into a function that only depends on Y , so the MOM is not a sufficient statistic for 0.

The density given is a beta density with o = =0. Thus, u; = E(Y)=.5. Since this
doesn’t depend on 0, we turn to p, = E(Y?*) = soey (see Ex. 4.200). Hence, with

m; = %Zn Y2, the MOM estimator of 0 is 0 = 12"
1

-1 ! 2 4mj—

Note that p; = E(Y) = 1/p. Thus, the MOM estimator of pis p=1/Y.
Here, pu; =E(Y)= 30. So, the MOM estimator of 0 is 0= 2y.

For Y following the given power family distribution,

3 sl |3
E(Y)=[ay*3 dy =a3 "Ly =2
0

a+l 0 a+l

A

Thus, the MOM estimator of 0 is 0= .

T3y

For Y following the given Pareto distribution,

E(Y)=[ap®ydy =ap*25| =ap/a-1).
B

The mean is not defined if o < 1. Thus, a generalized MOM estimator for o cannot be
expressed.

a. The MLE is easily found to be =Y.

b. E(A) =4, V(&)= .

c. Since A is unbiased and has a variance that goes to 0 with increasing n, it is consistent.
d. By the invariance property, the MLE for P(Y = 0) is exp(—1. ).
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The MLE is § = Y. By the invariance property of MLEs, the MLE of 6% is Y 2.

n -1 n
The likelihood function is L(6) = 9’”r”(]_[i:1 yi) exp(— > /e).
a. By Theorem 9.4, a sufficient statistic for 0 is ZinzlYir .
b. The log-likelihood is
InL(6)=—nInB®+ nlnr + (r — 1)111(1_[;‘=1 Y, )— ZL y /0.
By taking a derivative w.r.t. 8 and equating to 0, we find 6= %ZLY{ .

c. Note that 0 is a function of the sufficient statistic. Since it is easily shown that
E(Y")=0, 6 is then unbiased and the MVUE for 6.

a. The likelihood function is L(0)=(20+1)™". Lety=y(0)=20 + 1. Then, the

likelihood can be expressed as L(y) =y ". The likelihood is maximized for small values
of y. The smallest value that can safely maximize the likelihood (see Example 9.16)
without violating the support is ¥ =Y,,. Thus, by the invariance property of MLESs,

0=1(v,, —1).
b. Since V(Y) = (291;')2 By the invariance principle, the MLE is (Ym))2 /12.

P .

This exercise is a special case of Ex. 9.85, so we will refer to those results.
a. The MLE is §=Y /2, so the maximum likelihood estimate is y/2 =63.

E(0)=0,V(0)=V(Y /2)=0%6.

b.
C. The bound on the error of estimation is 2110 (é) =24(130)*/6 =106.14.
d. Note that V(Y) = 26% = 2(130)>. Thus, the MLE for V(Y) = 2(6)>.

a. For a > 0 known the likelihood function is

L0 = o T el )

The log-likelihood is then
InL(0) =—-nIn[T(a)] — Nt InO + (o0 — 1)111(]_[?:l y, )— > Vi/0
so that
SInL(@)=-na/0+ Y y,/0".
Equating this to 0 and solving for 0, we find the MLE of 0 to be

0=L>"Y, =1V,
b. Since E(Y) = a6 and V(Y) = ab* E(6) =6, V()= 6 /(na).

c. Since Y is a consistent estimator of u = a#, it is clear that 6 must be consistent for 0.
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9.86

9.87

d. From the likelihood function, it is seen from Theorem 9.4 that U = ZLYi isa

sufficient statistic for 6. Since the gamma distribution is in the exponential family of
distributions, U is also the minimal sufficient statistic.

e. Note that U has a gamma distribution with shape parameter na and scale parameter 0.
The distribution of 2U/0 is chi—square with 2na degrees of freedom. Withn=35, a =2,

2U/0 is chi-square with 20 degrees of freedom. So, with 3, = 10.8508, %3, = 31.4104,
2> Y 2> Y,

a 90% CI for 0 is =L )
31.4104 10.8508

First, similar to Example 9.15, the MLEs of p; and p are i, = X and i, =Y . To
estimate 02, the likelihood is

2 1 1| N Xi_12 " yi__22
L(c™) = (2m)(m 2 g eXp{_il:Zm(TH] _ZH( GH j ]}

The log—likelihood is

InL(0%)= K —(m+mino— 37" (x —,F = 3 (v, — .
By differentiating and setting this quantity equal to 0, we obtain

5% = Ziril(xi - Ml)z _ZLI(Yi —H, )2 .

N m+n
As in Example 9.15, the MLEs of ; and p, can be used in the above to arrive at the MLE

for o
&2 = ZL(Xi B X)2 _ZL(Yi _Y)2 ‘

m+n

Let Y, =# of candidates favoring candidate A, Y, = # of candidate favoring candidate B,
and Y; = # of candidates favoring candidate C. Then, (Y, Y2, Y3) is trinomial with
parameters (P, P2, P3) and sample size n. Thus, the likelihood L(p;, p2) is simply the
probability mass function for the trinomial (recall that (p; = 1— p; — p2):

L(pla pz):#‘vnsv plyl pzyz(l_ p, — pz)y3

This can easily be jointly maximized with respect to p; and p, to obtain the MLEs
p,=Y,/n, p,=Y,/n,andso p,=Y,/n.

For the given data, we have p, =.30, p, = .38, and p, =.32. Thus, the point estimate

of p; — p»is .30 — .38 =—.08. From Theorem 5.13, we have that V(Y;) = np;g; and
Cov(Yi,Yj) =—npip;. A two—standard—deviation error bound can be found by

2\/V(p1_ f)z)22\/V([51)+V(f)2)—2C0V(f)1,f)z)22\/p1q1/ﬂ+ pzqz/n+2p1pz/n~

This can be estimated by using the MLEs found above. By plugging in the estimates,
error bound of .1641 is obtained.
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The likelihood function is L(0)= (8 +1)" (]‘[i”=1 Y, )e The MLE is 6=-n/>"" InY,. This

is a different estimator that the MOM estimator from Ex. 9.69, however note that the
MLE is a function of the sufficient statistic.

Note that the likelihood is simply the mass function for Y: L(p)= (f, )py (1- p)*”. By

the ML criteria, we choose the value of p that maximizes the likelihood. IfY =0, L(p) is
maximized at p=.25. If Y =2, L(p) is maximized at p=.75. But, if Y =1, L(p) has the
same value at both p=.25 and p = .75; that is, L(.25) = L(.75) for y = 1. Thus, for this
instance the MLE is not unique.

Under the hypothesis that pw = pm = p, then Y = # of people in the sample who favor the
issue is binomial with success probability p and n = 200. Thus, by Example 9.14, the
MLE forpis p=Y/n and the sample estimate is 55/200.

Refer to Ex. 9.83 and Example 9.16. Lety =20. Then, the MLE foryis y =Y, and by

the invariance principle the MLE for 0 is 0=y /2.

(n)

a. Following the hint, the MLE of 0 is =Y, .

b. From Ex. 9.63, f,(y)= 3ny’""/0°", 0 <y <0. The distribution of T = Y(»)/0 is

f.()=3nt"",0<t<1.
Since this distribution doesn’t depend on 0, T is a pivotal quantity.

C. (Similar to Ex. 8.132) Constants a and b can be found to satisfy P@<T<b)=1-a
such that P(T <a) = P(T > b) = /2. Using the density function from part b, these are

givenby a=(a/2)"®" and b=(1-a/2)"®". So, we have
l—a=P@<Yn/0<b)= P, /b<0<Y, /a).

Y(n) Y(n) :
Thus, , isa(1—a)100% CI for 6.
(1-a/2)"C"7 (a/2)"C"

a. Following the hint, the MLE for 0 is 6=Y,,).

b. Since F(y | ) = 1 — 20%y %, the density function for Y 1s easily found to be
gy (¥)=2n6""y ",y > 0.
If we consider the distribution of T = 0/Y 1), the density function of T can be found to be
f.(t)=2nt>"",0<t<1.

C. (Similar to Ex. 9.92) Constants a and b can be found to satisfy P@<T<b)=1-a
such that P(T <a) = P(T > b) = /2. Using the density function from part b, these are

given by a=(a/2)"*" and b=(1-0a/2)"*" . So, we have
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9.94

9.95

9.96

9.97

9.98

l-a=P@<0/Nq<b)= P(aY(l) <0< bY(l)).

Thus, [(0/2)"27Y,,,, (1-a/2)"®"Y,, | isa (1 - 0)100% CI for 6.

(1>

Let p=1(0) so that 0 = t'(B). If the likelihood is maximized at 0, then L( é) > L(0) for

all 6. Define [?5 =1( 0 ) and denote the likelihood as a function of B as Li(B) = L(t™'(B)).
Then, for any £,

L(B)=Lt"(B)=L®O)<LO) =Lt B)=LP).
So, the MLE of B is f3 and so the MLE of t(0) is t(é).

The quantity to be estimated is R = p/(1 — p). Since p=Y /n is the MLE of p, by the
invariance principle the MLE for R is R= p/(1- p).

From Ex. 9.15, the MLE for * was found to be & = %zin:l (Y, =Y)*. By the invariance

property, the MLE for 6 is 6 =v6° = \/% Zin:l ,-Y).
a. Since p| =1/ p, the MOM estimator for pis p=1/m/ =1/Y.

b. The likelihood function is L(p)= p"(1— p)™ ™" and the log-likelihood is
InL(p)=nlnp+(Q Yy, —nin(l- p).

Differentiating, we have

dinl(p)=2-LC yvi—n).
Equating this to 0 and solving for p, we obtain the MLE p=1/Y, which is the same as
the MOM estimator found in part a.

Since In p(y | p)=Inp+(y-1DlIn(l - p),
snpyp)=1/p-(y-1)/1-p)
Snp(y[p)=-1/p* =(y=D/1-p)’.

Then,

~E[-Inp(Y | p)]=—E[—1/ P (Y 1= py e

p’(1-p)
Therefore, the approximate (limiting) variance of the MLE (as given in Ex. 9.97) is given
by
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From Ex. 9.18, the MLE fort(p)=pis p=Y/n and with — EL;’Tzzln p(Y | p)J:ﬁ ,a

100(1 — @)% CI for pis p+2z,,,y/2=2 . This is the same CI for p derived in Section 8.6.

In Ex. 9.81, it was shown that Y * is the MLE of t(8) = 6%. It is easily found that for the
exponential distribution with mean 6,

—E[;Tilnfme)]=é.

Thus, since $t(0) =260, we have an approximate (large sample) 100(1 — a)% CI for 0 as
2Y°

tz .

a/Z( \/ﬁ J

From Ex. 9.80, the MLE for t(A) = exp(—A) is t(i )= exp(—f» y=exp(=Y ). Itis easily
found that for the Poisson distribution with mean A,

) 1
- E[é‘?ln pY M)]:X'
Thus, since &-t(A)=—exp(—A), we have an approximate 100(1 — a)% CI for X as

— exp(—2X - Y exp(-2Y
exp(-V) 22, [ TR exp¥)a g, PR
A A=Y

With n =30 and Yy = 4.4, the maximum likelihood estimate of p is 1/(4.4) =.2273 and an
approximate 90% CI for p is

(.2273)*(.7727)

N A
R L Gl DR TE 1.96\/
’ n

= 2273 +.0715 or (.1558, .2988).

The Rayleigh distribution is a special case of the (Weibull) distribution from Ex. 9.82.
Also see Example 9.7

a. FromEx. 9.82withr=2, 0=1>" Y.,

i=1 |
b. Itis easily found that for the Rayleigh distribution with parameter 0,
1 2y’
0 0
Since E(Y?) =0, — E[;Tiln f (Y |e)]:é and so V(0) = 67/n.

Linf(Y[0)=

a. MOM: p/ =E(Y)=0+1,50 6, =m/ —1=Y —1.

b. MLE: 6, =Y,,,, the first order statistic.

(O
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C. The estimator él 1s unbiased since E( él) =E(Y)-1=0+1-1=80. The distribution
of Yayis 9y (y)=ne™"™,y>0. So, E(Y() =E(H,)= £ +0. Thus, 0, is not unbiased
but 6, =Y, — 1 is unbiased for 0.

The efficiency of 0, =Y -1 relative to 0, =Y, -
_V(é;) _V(Y(n —) _V(Y(l)) _
V) V-D v

L is given by

eff(6,,6;)

S|

e

o’
1
n

9.105 From Ex. 9.38, we must solve

d?lnl _ -n , Z(i-w)* _ A2 _ Z(yi-p)
I =0, so 6" =",

9.106 Following the method used in Ex. 9.65, construct the random variable T such that
T=1ifY;=0and T = 0 otherwise
Then, E(T) =P(T =1)=P(Y; =0) = exp(-A). So, T is unbiased for exp(—A). Now, we

know that W = ZLIY- 1s sufficient for A, and so it is also sufficient for exp(—A).

Recalling that W has a Poisson distribution with mean na,

E(T|W =w)=P(T =1|W =w)=P(Y, =0|W =w) =

_mm:owca;nzw)
- PW =w)

P(Y, =0,W =w)
PW =w)

e (e—(n—l)x [(n-1)A]

)y

-n (nA)"
w!

e

Thus, the MVUE is (1 - %)ZY‘ . Note that in the above we used the result that Z;Yi is

Poisson with mean (n—1)A.

9.107 The MLE of 0 is 6 =Y. By the invariance principle for MLEs, the MLE of F(t) is
F(t)=exp(~t/Y).

9.108 a. E(V)=P(Y;>1)=1-F(t) = exp(-t/0). Thus, V is unbiased for exp(-1/0).

b. Recall that U has a gamma distribution with shape parameter n and scale parameter 0.
Also,U—-Y; = ZLZYa is gamma with shape parameter N — 1 and scale parameter 6, and

since Y| and U — Y, are independent,

— -y,/6 -2 4—(u-y;)/6
F(yu-y) = (e b=y e e 0y <u <,
Next, apply the transformation z = u —y; such that u =z +y; to get the joint distribution
fOy, W) = (U= y,)" e 0<y <u<oo,

Now, we have

f(y, U= f(y““){”

-1 .
f(u) u”‘lj(u_yl) 1,0<ySu<o,
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RS ) T CU

t

-y

n-1 |4
:_[l_hj
u
t

n-1
So, the MVUE is (1 - Ulj .

Let Yy, Y, ..., Y, represent the (independent) values drawn on each of the n draws. Then,
the probability mass function for each Y;j is
PYi=k)=+.k=1,2,..,N.

a. Since p; =E(Y)= Z:j:l kP(Y =k)= ZE‘:I ki =50 = Nl the MOM estimator of N
Nl oY or N, =2Y —1.

b. First, E(Nl):2E(Y_)—1: (N“) 1=N,so N is unbiased. Now, since
E(Y?)= ZLkZﬁ: N(NADEND <N+‘>(62N+” , we have that V(Y) = SN0 Thyg,
V(N,) =4V (V) = 4(0hn) v

12n

a. Following Ex. 9.109, the likelihood is

L(N) =1~ in:l 1(y; € {1,2, .. ,N} ) =5 1(Y,, <N).
In order to maximize L, N should be chosen as small as possible subject to the constraint
that Yoy < N. Thus Nz :Y(n)

b. Since P(N, <k) = P(Y,,, <k)=P(Y, <k)--P(Y, <k)=(%)", s0 P(N, <k —1) = (&)’
and P(N, =k)= ()" = () =N7"[k" = (k =1)"]. So,
E(N,)=N"D" kK" = (k=1)"1=N">" (k™ — (k=)™ —(k -1)"]
S U WU
Consider z:ﬂ(k -D"=0"+1"+2"+...+(N =1)". Forlarge N, this is approximately

n+l1

N
the area beneath the curve f(x) = X" from X =0 to X =N, or Z:=1(k -1 zjx”dx =N

N

Thus, E(N,)~ N"[N™ —X— 0N and N, = 21N, = 2y

n+l (n)

is approximately

unbiased for N.

c. V(N,) is given, so V(N;) = (&L)V(N, )=l
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9.111

9.112

d. Note that, forn> 1,

V(N)) _ n(n+2) (N2-1) _n_+2( R )>
V(N;) — 3n N2 T3 1 1’

since for large N, (1 - #)z 1

The (approximately) unbiased estimate of N is N s =2Y,, =£(210)=252 and an

n
approximate error bound is given by

2WV(N,) =27 =2,/ 227 = 85.192.

<]

-\

a. (Refer to Section 9.3.) By the Central Limit Theorem, converges to a standard
JA/n

normal variable. Also, Y /A converges in probability to 1 by the Law of Large Numbers,
as does VY /A . So, the quantity

Y -\
W oo NAM Y -2
" W/n WN/n

converges to a standard normal distribution.

b. By part a, an approximate (1 — 0)100% CI for Ais Y +z_,Y /n.
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10.1

10.2

10.3

10.4

10.5

See Definition 10.1.

Note that Y is binomial with parameters n = 20 and p.

a.

d.
e.

If the experimenter concludes that less than 80% of insomniacs respond to the drug
when actually the drug induces sleep in 80% of insomniacs, a type I error has
occurred.

a = P(reject Hy | Ho true) = P(Y <12 | p=.8) =.032 (using Appendix III).

If the experimenter does not reject the hypothesis that 80% of insomniacs respond to
the drug when actually the drug induces sleep in fewer than 80% of insomniacs, a
type II error has occurred.

B(.6) = P(fail to reject Hy | Hatrue) =P(Y > 12 |p=.6)=1-P(Y <12 | p=.6) = .416.
B(.4) = P(fail to reject Hy | Ha true) = P(Y > 12 | p = .4) = .021.

a. Using the Binomial Table, P(Y <11 |p=.8)=.011,soc=11.
b. B(.6) = P(fail to reject Hy | Ha true) =P(Y > 11 | p=.6)=1-P(Y <11 | p=.6) =.596.
C. B(.4) = P(fail to reject Hy | Ha true) = P(Y > 11 | p=.4) = .057.

The parameter p = proportion of ledger sheets with errors.

a.

b.

o

If it is concluded that the proportion of ledger sheets with errors is larger than .05,
when actually the proportion is equal to .05, a type I error occurred.
By the proposed scheme, Hy will be rejected under the following scenarios (let E =
error, N = no error):

Sheet 1 Sheet2 Sheet3

mmzZ2Z2
mzmZ

N
N
N

With p = .05, a = P(NN) + P(NEN) + P(ENN) + P(EEN) = (.95)> + 2(.05)(.95)* +
(.05)*(.95) = .995125.
If it is concluded that p = .05, but in fact p > .05, a type II error occurred.

B(pa) = P(fail to reject Hy | Ha true) = P(EEE, NEE, or ENE | pa) = 2p;(1— p,)+ p..

Under Hy, Y; and Y; are uniform on the interval (0, 1). From Example 6.3, the
distribution of U=Y; + Y, is

) = u 0<u<l
g l2-u 1<ux<?2

Test 1: P(Y; >.95)=.05=oq.
2
Test2: a=.05=P(U>c)= I(Z —u)du =2 =2c+.5¢%. Solving the quadratic gives

the plausible solution of ¢ = 1.684.

201
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10.6

10.7

10.8

10.9

10.10

10.11

10.12

10.13

The test statistic Y is binomial with n = 36.

a. a=P(reject Hy | Ho true) =P([Y = 18| >4 | p=.5)=P(Y < 14) + P(Y > 22) = .243.

b. B =P(fail to reject Hy | Ha true) = P(JY — 18| <3 | p=.7)=P(15<Y <21|p=.7)=
.09155.

a. False, Hy is not a statement involving a random quantity.
b. False, for the same reason as part a.

C. True.

d. True.

e. False, this is given by a.
f. i. True.

ii. True.
iii. False, B and a behave inversely to each other.

Let Y, and Y; have binomial distributions with parameters n = 15 and p.
a. a=P(reject Hy in stage 1 | Hy true) + P(reject Hy in stage 2 | Hy true)

=P, 24)+P(Y,+Y, 26,Y, <3)=P(Y, Z4)+Z:i3:0 P, +Y,>6,Y, <i)

=P, >24)+ Z::O P, >6—-1)P(Y, <i) =.0989 (calculated with p =.10).
Using R, this is found by:

> 1 - pbinom(3,15, .1)+sum((1-pbinom(5-0:3,15, .1))*dbinom(0:3,15, .1))
[1] 0.0988643

b. Similar to part a with p=.3: a =.9321.
c. P =P(fail to reject Ho | p=.3)

3 . 3 . .
=D P, =i Y, +Y, <5) =" P(Y, =5-1)P(Y, =i) =.0679.

a. The simulation is performed with a known p = .5, so rejecting Hy is a type I error.
b.-e. Answers vary.

f. This is because of part a.

g.-h. Answers vary.

a. An error is the rejection of Hy (type I).

b. Here, the error is failing to reject Hy (type II).

C. Hy is rejected more frequently the further the true value of p is from .5.
d. Similar to part C.

a. The error is failing to reject Hy (type II).
b.-d. Answers vary.

Since B and a behave inversely to each other, the simulated value for B should be smaller
for a = .10 than for a = .05.

The simulated values of § and a should be closer to the nominal levels specified in the
simulation.
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a. The smallest value for the test statistic is —.75. Therefore, since the RR is {z <—.84},
the null hypothesis will never be rejected. The value of n is far too small for this large—
sample test.

b. Answers vary.

C. Ho is rejected when p =0.00. P(Y=0]|p=.1)=.349 > .20.

d. Answers vary, but n should be large enough.

a. Answers vary.
b. Answers vary.

a. Incorrect decision (type I error).
b. Answers vary.
c. The simulated rejection (error) rate is .000, not close to a = .05.

a. Ho: i = w2, Ha: i > o

b. Reject if Z > 2.326, where Z is given in Example 10.7 (Do = 0).

c.z=.075.

d. Fail to reject Hyp — not enough evidence to conclude the mean distance for breaststroke
is larger than individual medley.

e. The sample variances used in the test statistic were too large to be able to detect a
difference.

Ho: p=13.20, Ha: p < 13.20. Using the large sample test for a mean, z = -2.53, and with
a=.01,-z9 =-2.326. So, Hy is rejected: there is evidence that the company is paying
substandard wages.

Ho: n =130, Ha: p < 130. Using the large sample test for a mean, z = % =—4.22 and

with —z s =—1.645, Hy is rejected: there is evidence that the mean output voltage is less
than 130.

Ho: n> 64, Ha: p < 64. Using the large sample test for a mean, z=-1.77, and w/ a = .01,
—Z01 =-2.326. So, Hy is not rejected: there is not enough evidence to conclude the
manufacturer’s claim is false.

Using the large—sample test for two means, we obtain z = 3.65. With a = .01, the test
rejects if |z] > 2.576. So, we can reject the hypothesis that the soils have equal mean
shear strengths.

a. The mean pretest scores should probably be equal, so letting p; and p, denote the mean
pretest scores for the two groups, Ho: 1 = to, Ha: pi # pa.

b. This is a two—tailed alternative: reject if |z| > Zy,.

c. With a =.01, z9os = 2.576. The computed test statistic is z = 1.675, so we fail to reject
Ho: we cannot conclude the there is a difference in the pretest mean scores.
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10.23

10.24

10.25

10.26

10.27

10.28

a.-b. Let p; and p, denote the mean distances. Since there is no prior knowledge, we will
perform the test Hy: p; — p2 = 0 vs. Ha: wy — pp # 0, which is a two—tailed test.

. The computed test statistic is z = —.954, which does not lead to a rejection with o = .10:
there is not enough evidence to conclude the mean distances are different.

Let p = proportion of overweight children and adolescents. Then, Hy: p =.15, Ha: p <.15
and the computed large sample test statistic for a proportion is Z=—.56. This does not
lead to a rejection at the o = .05 level.

Let p = proportion of adults who always vote in presidential elections. Then, Hy: p = .67,
Ha: p # .67 and the large sample test statistic for a proportion is [z| = 1.105. With Z o5 =
2.576, the null hypothesis cannot be rejected: there is not enough evidence to conclude
the reported percentage is false.

Let p = proportion of Americans with brown eyes. Then, Hy: p = .45, Ha: p # .45 and the
large sample test statistic for a proportion is z =—.90. We fail to reject Ho.

Define: p; = proportion of English—fluent Riverside students
p> = proportion of English—fluent Palm Springs students.
To test Hy: p1 — p2 = 0, versus Ha: p1 — p2 # 0, we can use the large—sample test statistic
7 = &
However, this depends on the (unknown) values p; and p,. Under Hy, p1 =p>=p (i.e.
they are samples from the same binomial distribution), so we can “pool” the samples to
estimate p:

p :n1p1+n2p2:Yl+Y2
b .
n +n, n +n,

So, the test statistic becomes
Polsa +5;

Here, the value of the test statistic is Z=—.1202, so a significant difference cannot be
supported.

a. (Similar to 10.27) Using the large—sample test derived in Ex. 10.27, the computed test
statistic is Z =—2.254. Using a two—sided alternative, Z yos = 1.96 and since |z| > 1.96, we
can conclude there is a significant difference between the proportions.

b. Advertisers should consider targeting females.
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Note that color A is preferred over B and C if it has the highest probability of being
purchased. Thus, let p = probability customer selects color A. To determine if A is
preferred, consider the test Hy: p = 1/3, Ha: p> 1/3. With p =400/1000 = .4, the test
statistic is Z =4.472. This rejects Hy with o = .01, so we can safely conclude that color A
is preferred (note that it was assumed that “the first 1000 washers sold” is a random
sample).

Let p = sample percentage preferring the product. With a = .05, we reject Hy if
p-—.2

J-2(:8)/100

Solving for p, the solutionis p <.1342.

<-1.645.

The assumptions are: (1) a random sample (2) a (limiting) normal distribution for the
pivotal quantity (3) known population variance (or sample estimate can be used for large

n).

Let p = proportion of U.S. adults who feel the environment quality is fair or poor. To test
Ho: p=.50 vs. Ha: p > 50, we have that p = .54 so the large—sample test statistic is Z =
2.605 and with zys = 1.645, we reject Hp and conclude that there is sufficient evidence to
conclude that a majority of the nation’s adults think the quality of the environment is fair
Or poor.

(Similar to Ex. 10.27) Define:
p1 = proportion of Republicans strongly in favor of the death penalty
p2 = proportion of Democrats strongly in favor of the death penalty

To test Hp: p1 — p2 = 0 vs. Ha: p1 — p2 > 0, we can use the large—sample test derived in Ex.
10.27 with p, =.23, p, =.17, and f)p =.20. Thus, z=1.50 and for zos = 1.645, we fail

to reject Hy: there is not enough evidence to support the researcher’s belief.

Let p = mean length of stay in hospitals. Then, for Hy: p =5, Ha: p> 5, the large sample
test statistic is z = 2.89. With o = .05, zs = 1.645 so we can reject Hy and support the
agency’s hypothesis.

(Similar to Ex. 10.27) Define:

p1 = proportion of currently working homeless men

p> = proportion of currently working domiciled men
The hypotheses of interest are Hy: p; — p2 = 0, Ha: p1 — p2 <0, and we can use the large—
sample test derived in Ex. 10.27 with p, =.30, p, =.38, and p, =.355. Thus,z=-1.48

and for —z o) =-2.326, we fail to reject Hy: there is not enough evidence to support the
claim that the proportion of working homeless men is less than the proportion of working
domiciled men.

(similar to Ex. 10.27) Define:
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p; = proportion favoring complete protection

p2 = proportion desiring destruction of nuisance alligators
Using the large—sample test for Hy: p; — p2 = 0 versus Ha: p;y — p2 #0, Z=—4.88. This
value leads to a rejections at the oo = .01 level so we conclude that there is a difference.

10.37 With Ho: p = 130, this is rejected if 2 =212 < —1.645, or if § <130 —16Be =129.45. If

o/
n=128, then B = P(Y >129.45 |y = 128) = P(Z > 1245128 — p(Z > 4.37) = .0000317.
10.38 With Hy: p > 64, this is rejected if z = y/ji <=2.326,0rif y <6423 =61.36. Ifp=
60, then B =P(Y >61.36 p=60)=P(Z > £16:60) = P(Z > 1.2) = .1151.

10.39 In Ex. 10.30, we found the rejection region to be: { p <.1342}. For p =.15, the type II
error rate is = P(p >.1342| p=.15)=P(Z > %): P(Z > —.4424) = .6700.

10.40 Refer to Ex. 10.33. The null and alternative tests were Ho: p; — P2 =0 vs. Ha: p1 —p2 > 0.
We must find a common sample size n such that a = P(reject Hy | Hp true) = .05 and B =
P(fail to reject Hy | Ha true) <.20. For a = .05, we use the test statistic

Z: pl_pZ_

PP -0
[PiG y Poy
Reject Ho if: P, — p, >1.645,/ 2L B

For B, we fix it at the largest acceptable value so P(p, — p,<c|pi—p2=.1)=.20 for
some C, or simply

p—p,—.1
Fail to reject Ho if: Sl Bk —.84, where —.84 = 75.
e

Let P, — P, =1.645,20 + 2% and substitute this in the above statement to obtain

1.645,/B0 1 B _ 1 1
84 = —1.645———=— orsimply 2.485 = ——
%_’_% p:’]ql + pzn% ,plql + pz‘]z

Using the hint, we set p; = p, = .5 as a “worse case scenario” and find that

2.485 = —1
1/.5(.5)|%+%|

The solution is n = 308.76, so the common sample size for the researcher’s test should be
n=309.

such that we reject Hy if Z >z s = 1.645. In other words,

10.41 Refer to Ex. 10.34. The rejection region, written in terms of Y, is

A > 1.645{ < {y > 5.228}.

Then, p=P(y <5228 | p=5.5)= P(Z <3253 ) = p(Z < 1.96) = .025.
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10.42 Using the sample size formula given in this section, we have
n=0000 60737,
(Ha=Ho)
so a sample size of 608 will provide the desired levels.

10.43 Let p; and p, denote the mean dexterity scores for those students who did and did not
(respectively) participate in sports.
a. For Ho: iy — o =0 vs. Ha: py — pp > 0 with o = .05, the rejection region is {z > 1.645}
and the computed test statistic is
. 32.19-31.68

(434)% | (4.56)°
37 37

Thus Hy is not rejected: there is insufficient evidence to indicate the mean dexterity
score for students participating in sports is larger.

49.

b. The rejection region, written in terms of the sample means, is

Y, =Y, > 1,645, G300 4 G507 1 702

Then, B =P(Y, -V, <1.702 |, —p, =3) = P[Z < 822 )= P(Z < -1.25) =.1056.

10.44 We requirea. = P(Y, =Y, >c|p, —n, =0) = P(Z > —0 j, so that z, = on_ - Also,

B cf+0§”n dof+c§.
B=P(Y,-Y,<clu,—u,=3)= P(Z S%}, so that —z, =%. By eliminating c

. . 2, 2 2, 2 .
in these two expressions, we have z,+/77% =3 —2,4/7 . Solving for n, we have

n= 2(1.645)2[(4.3324)2+(4<56)2] —47.66.
A sample size of 48 will provide the required levels of a and .

10.45 The 99% Clis 1.65—1.43%2.576,/29° 4 2% — 22+ 155 or (.065,.375). Since the

interval does not contain 0, the null hypothesis should be rejected (same conclusion as
Ex. 10.21).

6-9,

Gy
side is the 100(1 — )% lower confidence bound for 6.

10.46 The rejection region is >, , which is equivalent to 6, < 0- 2,6, The left-hand

10.47 (Refer to Ex. 10.32) The 95% lower confidence bound is .54 —1.645,/229) — 5148,

1060
Since the value p = .50 is less than this lower bound, it does not represent a plausible
value for p. This is equivalent to stating that the hypothesis Hy: p = .50 should be
rejected.
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10.48

10.49

10.50

10.51

10.52

10.53

10.54

0-0

Gy

0, > 0+ 2,6, The left-hand side is the 100(1 — )% upper confidence bound for 6.

(Similar to Ex. 10.46) The rejection region is ¢ < -z, which is equivalent to

(Refer to Ex. 10.19) The upper bound is 128.6+1.645(2L ) = 129.146. Since this bound

is less than the hypothesized value of 130, Hy should be rejected as in Ex. 10.19.

Let p = mean occupancy rate. To test Hyp: n> .6, Ha: 1 < .6, the computed test statistic is

Z= A1'15/8J_i670 =—1.99. The p—value is given by P(Z <—-1.99) =.0233. Since this is less

than the significance level of .10, Hy is rejected.

To test Ho: py — o = 0 vs. Ha: g — po # 0, where py, p, represent the two mean reading
test scores for the two methods, the computed test statistic is

Z:M:I.S&

The p—value is given by P(|Z [>1.58) =2P(Z >1.58) =.1142, and since this is larger
than o = .05, we fail to reject Hy.

The null and alternative hypotheses are Ho: p; — p2 = 0 vs. Ha: p; — p2 > 0, where p; and
p2 correspond to normal cell rates for cells treated with .6 and .7 (respectively)
concentrations of actinomycin D.

a. Using the sample proportions .786 and .329, the test statistic is (refer to Ex. 10.27)

7= 180752 _ 5443 The pvalueis PZ > 5.443) = 0.

VJ(557)(.443) %
b. Since the p—value is less than .05, we can reject Hy and conclude that the normal cell
rate is lower for cells exposed to the higher actinomycin D concentration.

a. The hypothesis of interest is Ho: p; = 3.8, Ha: 1 < 3.8, where 1, represents the mean
drop in FVC for men on the physical fitness program. With z =-996, we have p—value
=P(Z<-1)=.1587.

b. With a = .05, H, cannot be rejected.

c. Similarly, we have Hy: o = 3.1, Ha: pp <3.1. The computed test statistic is z =—1.826
so that the p—value is P(Z <-1.83) = .0336.

d. Since o = .05 is greater than the p—value, we can reject the null hypothesis and
conclude that the mean drop in FVC for women is less than 3.1.

a. The hypotheses are Hy: p = .85, Ha: p > .85, where p = proportion of right-handed
executives of large corporations. The computed test statistic is z = 5.34, and with a = .01,
Zo1 =2.326. So, we reject Hp and conclude that the proportion of right-handed
executives at large corporations is greater than 85%
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b. Since p—value = P(Z > 5.34) <.000001, we can safely reject H, for any significance
level of .000001 or more. This represents strong evidence against Hy.

10.55 To test Hp: p=.05, Ha: p <.05, with p =45/1124 = .040, the computed test statistic is z
=—1.538. Thus, p—value = P(Z <-1.538) =.0616 and we fail to reject Hy, with a = .01.
There is not enough evidence to conclude that the proportion of bad checks has decreased
from 5%.

10.56 To test Ho: iy — pp = 0 vs. Ha: py — po > 0, where y, o represent the two mean recovery
times for treatments {no supplement} and {500 mg Vitamin C}, respectively. The

computed test statistic is z = ﬁ =2.074. Thus, p—value = P(Z > 2.074) =

.0192 and so the company can reject the null hypothesis at the .05 significance level
conclude the Vitamin C reduces the mean recovery times.

10.57 Let p = proportion who renew. Then, the hypotheses are Hy: p = .60, Ha: p #.60. The
sample proportion is p = 108/200 = .54, and so the computed test statistic is z=—1.732.

The p—value is given by 2P(Z <—-1.732) = .0836.

10.58 The null and alternative hypotheses are Hy: p; — p2 = 0 vs. Ha: p; — p2 > 0, where p; and
p2 correspond to, respectively, the proportions associated with groups A and B. Using
the test statistic from Ex. 10.27, its computed value is z = % =2.858. Thus, p—value

-6(4)5;

=P(Z>2.858)=.0021. With a =.05, we reject HO and conclude that a greater fraction
feel that a female model used in an ad increases the perceived cost of the automobile.

10.59 a.-d. Answers vary.
10.60 a.-d. Answers vary.

10.61 If the sample size is small, the test is only appropriate if the random sample was selected
from a normal population. Furthermore, if the population is not normal and ¢ is
unknown, the estimate S should only be used when the sample size is large.

10.62 For the test statistic to follow a t—distribution, the random sample should be drawn from a
normal population. However, the test does work satisfactorily for similar populations
that possess mound—shaped distributions.

10.63 The sample statistics are § = 795, s = 8.337.
a. The hypotheses to be tested are Hy: p = 800, Ha: p < 800, and the computed test
statisticis t = —==% = _134]. With5-1=4 degrees of freedom, —t s =—2.132 so

T 8337/45
we fail to reject Hp and conclude that there is not enough evidence to conclude that
the process has a lower mean yield.
b. From Table 5, we find that p—value > .10 since —t ;o =—1.533.
c. Using the Applet, p—value = .1255.
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10.64

10.65

10.66

10.67

10.68

10.69

d.

The conclusion is the same.

The hypotheses to be tested are Hp: p =7, Ha: p # 7, where p = mean beverage volume.

a.

b.
C.

The computed test statistic is t = - = 2.64 and with 10 1 =9 degrees of

freedom, we find that t g5 = 2.262. So the null hypothesis could be rejected if a = .05
(recall that this is a two—tailed test).

Using the Applet, 2P(T > 2.64) = 2(.01346) = .02692.

Reject Hy.

The sample statistics are y =39.556,s=7.138.

a.

To test Hy: =45, Ha: p <45, where 1 = mean cost, the computed test statistic is t =
—3.24. With 18 — 1 = 17 degrees of freedom, we find that —t oos = —2.898, so the p—
value must be less than .005.

Using the Applet, P(T <-3.24) =.00241.

Since t s = 2.110, the 95% Cl is 39.556 + 2.11(%) or (36.006, 43.106).

The sample statistics are Y = 89.855, s = 14.904.

a.

b.
C.

To test Hy: p =100, Ha: p < 100, where p = mean DL reading for current smokers, the
computed test statistic is t =—3.05. With 20 — 1 = 19 degrees of freedom, we find that
—to1 =-2.539, so we reject Hy and conclude that the mean DL reading is less than
100.

Using Appendix 5, —toos =—2.861, so p—value < .005.

Using the Applet, P(T <-3.05) =.00329.

Let p = mean calorie content. Then, we require Hy: p =280, Ha: > 280.

a.

The computed test statistic is t = 22 =4.568. With 10 — 1 =9 degrees of freedom,

tor = 2.821 so Hy can be rejected: it is apparent that the mean calorie content is
greater than advertised.
The 99% lower confidence bound is 358 — 2.821% =309.83 cal.

Since the value 280 is below the lower confidence bound, it is unlikely that p = 280
(same conclusion).

The random samples are drawn independently from two normal populations with
common variance.

The hypotheses are Ho: 1 — o = 0 vs. Ha: iy — o # 0.

a.

The computed test statistic is, where s; =220 = 62,74, is given by

t=—60 - 57
62.74(%+%J
I. With 11 + 14 — 2 =23 degrees of freedom, —t 1o =—-1.319 and -t os =—1.714.

Thus, since we have a two—sided alternative, .10 < p—value < .20.
ii. Using the Applet, 2P(T <-1.57) = 2(.06504) = .13008.
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b. We assumed that the two samples were selected independently from normal
populations with common variance.
c. Fail to reject Hy.

a. The hypotheses are Ho: 11 — p = 0 vs. Ha: i — o > 0. The computed test statistic is t =
2.97 (here, sé =.0001444 ). With 21 degrees of freedom, tys = 1.721 so we reject Hy.

b. For this problem, the hypotheses are Ho: p; — po = .01 vs. Ha: iy — 2 > .01. Then,
t = (20200 — 989 and p-value >.10. Using the Applet, P(T > .989) = .16696.

=t
9 12

a. The summary statistics are: y, = 97.856, s} =.3403, y, = 98.489, s =.3011. To

test: Ho: pp — p2 =0 vs. Ha: py — pp # 0, t=-2.3724 with 16 degrees of freedom. We have
that —t o, =—2.583, —tpo5 =—2.12, s0 .02 < p—value < .05.

b. Using the Applet, 2P(T <-2.3724) = 2(.01527) = .03054.

R output:
> t.test(temp~sex,var.equal=T)

Two Sample t-test

data: temp by sex
t = -2.3724, df = 16, p-value = 0.03055
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-1.19925448 -0.06741219
sample estimates:
mean in group 1 mean in group 2
97 .85556 98.48889

To test: Ho: iy — 2 =0 vs. Ha: g — o # 0, t =1.655 with 38 degrees of freedom. Since
we have that o = .05, t g5 = Z,025 = 1.96 so fail to reject Hy and p—value = 2P(T > 1.655) =
2(.05308) = .10616.

a. To test: Ho: i — o =0 vs. Ha: iy — o # 0, t=1.92 with 18 degrees of freedom. Since
we have that o = .05, tgs = 2.101 so fail to reject Hy and p—value = 2P(T > 1.92) =
2(.03542) = .07084.

b. To test: Ho: 1 — o =0 vs. Ha: g — o # 0, t = .365 with 18 degrees of freedom. Since
we have that o = .05, tgs = 2.101 so fail to reject Hy and p—value = 2P(T > .365) =
2(.35968) = .71936.

The hypotheses are Hy: 1= 6 vs. Ha: 1 < 6 and the computed test statistic is t = 1.62 with
11 degrees of freedom (note that here ¥ =9, so Hy could never be rejected). With a =

.05, the critical value is —t s = —1.796 so fail to reject Hy.
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10.75

10.76

10.77

Define i1 = mean trap weight. The sample statistics are 'y =28.935,s=9.507. To test
Ho: u=30.31 vs. Ha: £ <30.31, t =—.647 with 19 degrees of freedom. With a = .05, the
critical value is —t o5 = —1.729 so fail to reject Hy: we cannot conclude that the mean trap

weight has decreased. R output:
> t.test(lobster,mu=30.31, alt="less")

One Sample t-test

data: lobster
t = -0.6468, df = 19, p-value = 0.2628
alternative hypothesis: true mean is less than 30.31
95 percent confidence interval:
-Inf 32.61098

a. To test Ho: iy — o = 0 vs. Ha: iy — o > 0, where , pp represent mean plaque
measurements for the control and antiplaque groups, respectively.

b. The pooled sample variance is s = SR — 1024 and the computed test statistic

ist=-12=18_ =72 806 with 12 degrees of freedom. Since o =.05, tos =1.782 and Hy is
,1024(%)

rejected: there is evidence that the antiplaque rinse reduces the mean plaque

measurement.

c. With ty; =2.681 and t o5 = 3.005, .005 < p—value < .01 (exact: .00793).

a. To test: Ho: iy — o = 0 vs. Ha: py — wo # 0, where py, 1, are the mean verbal SAT
scores for students intending to major in engineering and language (respectively), the

pooled sample variance is S, = 1427414657 _ 1894 5 and the computed test statistic is

t= 44"—5[342] =—5.54 with 28 degrees of freedom. Since —t o5 =—2.763, we can reject H
1894.5 —
15

and p—value <.01 (exact: 6.35375e-06).
b. Yes, the CI approach agrees.

c. To test: Ho: iy — pp = 0 vs. Ha: g — pp # 0, where p, p, are the mean math SAT scores
for students intending to major in engineering and language (respectively), the pooled

. . 2 2 . . .
sample variance is s} = “CP52C2- = 2976.5 and the computed test statistic is

t= L}”z) =1.56 with 28 degrees of freedom. From Table 5, .10 < p—value < .20
2976.5| —
15

(exact: 0.1299926).

d. Yes, the CI approach agrees.
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a. We can find P(Y > 1000) = P(Z > 1%9-80) = P(Z > 5) = 0, so it is very unlikely that the
force is greater than 1000 Ibs.

b. Since n = 40, the large—sample test for a mean can be used: Hy: p= 800 vs. Ha: p > 800

and the test statistic is z = jj;% =3.262. With p—value = P(Z > 3.262) < .00135, we

reject H.

c. Note that ifo 40, 6> = 1600. To test: Ho: 6° = 1600 vs. Ha: 6> > 1600. The test

_39(2350) __

statistic is x> =322 = 57.281. With 40 — 1 = 39 degrees of freedom (approximated

with 40 degrees of freedom in Table 6), ¥ 5; = 55.7585. So, we can reject Hp and
conclude there is sufficient evidence that ¢ exceeds 40.

7(018) _

a. The hypotheses are: Ho: 6° = .01 vs. Ha: 6° > .01. The test statistic is 3 =

12.6 with 7 degrees of freedom. With a.= .05, x5 = 14.07 so we fail to reject Ho. We
must assume the random sample of carton weights were drawn from a normal population.

b. i. Using Table 6, .05 < p—value < .10.
ii. Using the Applet, P(x* > 12.6) = .08248.

The two random samples must be independently drawn from normal populations.

For this exercise, refer to Ex. 8.125.
a. The rejection region is {Sf/S2 > FVV‘W2 { /S2 FVZW2 } If the reciprocal is

v

taken in the second inequality, we have S / S’ > Fvv'a /-
b. P(SZ/SZ>F),,)=P(s?/S2>F), ,)+P(S:/S?>F", ,)=a,by parta.
a. Let o7, o> denote the variances for compartment pressure for resting runners and
cyclists, respectively. To test Ho:6; = o3 vs. Ha: 67 # G5, the computed test statistic is
F =(3.98)%/(3.92)> = 1.03. With a=.05, F,,; =4.03 and we fail to reject Ho.

b. i. From Table 7, p—value > .1.
ii. Using the Applet, 2P(F > 1.03) = 2(.4828) = .9656.

c. Let 67, o3 denote the population variances for compartment pressure for 80%
maximal O, consumption for runners and cyclists, respectively. To test Ho: 67 = o3 vs.

Ha:o? # o3, the computed test statistic is F = (16.9)%/(4.67)* = 13.096 and we reject Ho:
the is sufficient evidence to claim a difference in variability.

d. i. From Table 7, p—value < .005.
ii. Using the Applet, 2P(F > 13.096) = 2(.00036) = .00072.
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10.83

10.84

10.85

10.86

10.87

10.88

a. The manager of the dairy is concerned with determining if there is a difference in the
two variances, so a two—sided alternative should be used.

b. The salesman for company A would prefer Ha: 67 < o3, since if this hypothesis is

accepted, the manager would choose company A’s machine (since it has a smaller
variance).

c. For similar logic used in part b, the salesman for company B would prefer H,: 67 > o3.

Let 67, o3 denote the variances for measurements corresponding to 95% ethanol and

20% bleach, respectively. The desired hypothesis test is Ho:6; = 63 vs. Ha: 67 # o5 and

the computed test statistic is F = (2.78095/.17143) = 16.222.

a. 1. With 14 numerator and 14 denominator degrees of freedom, we can approximate
the critical value in Table 7 by F;’ s =4.25, so p-value <.01 (two—tailed test).

i1. Using the Applet, 2P(F > 16.222) = 0.
b. We would reject Hy and conclude the variances are different.

Since (.7)* = .49, the hypotheses are: Hy: 6> = .49 vs. Ha: 6° > .49. The sample variance

s* =3.667 so the computed test statistic is y° = % = 22.45 with 3 degrees of freedom.

Since y5, = 12.831, p—value < .005 (exact: .00010).

The hypotheses are: Ho: 6 = 100 vs. Ha: > > 100. The computed test statistic is
x> =200 = 2736, Witho=.01, %5, =36.1908 so we fail to reject Ho: there is not

100
enough evidence to conclude the variability for the new test is higher than the standard.

Refer to Ex. 10.87. Here, the test statistic is (.017)%/(.006)> = 8.03 and the critical value
is Flgvos = 2.80. Thus, we can support the claim that the variance in measurements of

DDT levels for juveniles is greater than it is for nestlings.

Refer to Ex. 10.2. Table 1 in Appendix III is used to find the binomial probabilities.
a. power(4)=P(Y<12|p=.4)=.979. b. power(.5)=P(Y<12|p=.5)=.86
c. power(.6)=P(Y<12|p=.6)=.584. d. power(.7)=P(Y<12|p=.7)=.228
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1.0

0.8

0.6
1

power

0.2

0.0
1

e. The power function is above.

10.89 Refer to Ex. 10.5: Y, ~ Unif(0, 6 + 1).
a. 0=.1,50Y, ~Unif(.1, 1.1) and power(.1) = P(Y, > .95) = j;';dy =15

b. 0= .4:power(.4)=P(Y>.95)= 45
c. 0=.7:power(.7)=P(Y>.95)=.75
d. 6=1:power(l)=P(Y>.95)=1

1.0

0.8

power

0.2

e. The power function is above.

10.90 Following Ex. 10.5, the distribution function for Test 2, where U =Y + Y, is
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0 u<o
FL ()= Su’ OSUSI.
2u-.5u" -1 1<u<?2
1 u>2

The test rejects when U > 1.684. The power function is given by:
power(0) = P, (Y, +Y, >1.684)=P(Y, +Y, —20>1.684 — 20)
=P(U >1.684-20) =1 — Fy(1.684 — 260).
a. power(.1)=1-Fy(1.483)=.133 power(.4) =1 - Fy(.884) =.609
power(.7) =1 —Fy(.284) =.960 power(l)=1-Fy(-316)=1.

0.6 0.8 1.0
1 1

power

0.4

0.0 0.2 0.4 0.6 0.8 10

b. The power function is above.
c. Test2 is a more powerful test.

10.91 Refer to Example 10.23 in the text. The hypotheses are Hp: p=7 vs. Ha: p> 7.
a. The uniformly most powerful test is identically the Z—test from Section 10.3. The

rejection region is: reject if Z = J% > 705 = 1.645, or equivalently, reject if
Y >1.645.25+7=7.82.
b. The power function is: power(p) = P(Y >7.82|n) = P(Z > z/%) Thus:
power(7.5) = P(Y >7.82|7.5) =P(Z> .64) = .2611.
power(8.0) = P(Y >7.82(8.0) = P(Z>—.36) = .6406.
power(8.5) = P(Y >7.82/8.5) =P(Z>-1.36)=.9131
power(9.0) = P(Y >7.82]9.0) = P(Z>-2.36) = .9909.
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1.0

0.6
I

power

0.4

0.2

c. The power function is above.

10.92 Following Ex. 10.91, we require power(8) = P(Y >7.82|8) = P(Z > 282 ) = 80. Thus,

J5/n
%%8 =730 =—84. The solution is n = 108.89, or 109 observations must be taken.

(1.96+1.96)*(25) _

10.93 Using the sample size formula from the end of Section 10.4, we have n = (1025)?

15.3664, so 16 observations should be taken.

10.94 The most powerful test for Hy: o= 0(2) vs. Ha: o’ = 612, 012 > 6(2), 1s based on the

likelihood ratio:
L(G(Z)) G, ) 012 _ G(z) ] i
Lo o) TN° i Wi~ <k.
L(Gf) o, P 203012 Z|:l(y| 1)

This simplifies to

n 26’62
T=5"(y. —u)*>|nin| 2L |—Ink |=20° _¢.
z|=1(y| l"’) |: (G J :|012 —Gé

0

which is to say we should reject if the statistic T is large. To find a rejection region of
size a, note that

T > (Yi-p)’

— =“———— has a chi-square distribution with n degrees of freedom. Thus, the

or Gy
most powerful test is equivalent to the chi—square test, and this test is UMP since the RR
is the same for any o} > o;.

10.95 a. Totest Ho: 6 = 09 vs. Ha: 0 =0,, 09 < 04, the best test is

LO) _(0,) [ (1 1)
L(ea)_[eoj { (60 ea]zi_lyi}k.
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10.96

This simplifies to

12 -1
0 1 1
1oy S| | L1 e
z|:ly' n (9 j |:60 0 :|

so Hy should be rejected if T is large. Under Hy, Y has a gamma distribution with a shape
parameter of 3 and scale parameter 6. Likewise, T is gamma with shape parameter of 12
and scale parameter 0y, and 2T/6, is chi—square with 24 degrees of freedom. The critical
region can be written as

4
22N 2
eO e0 e0
where ¢; will be chosen (from the chi—square distribution) so that the test is of size a.

C,

b. Since the critical region doesn’t depend on any specific 6, < 6y, the test is UMP.

a. The power function is given by power(0) = J.l Oy*'dy =1-.5°. The power function is
graphed below.

1.0

power

0.4

T T T T T T
0 2 4 6 8 10

b. To test Hy: 0 =1 vs. Ha: 0 = 04, 1 < 0,, the likelihood ratio is
L(1) _ 1e <k,
L®, 06,y™

This simplifies to
1

1 )o-!
> — =c,
Y71 0.k

where C is chosen so that the test is of size a. This is given by
P(Y2clo=1)=[ dy=1-c=a,
so that c =1 —a. Since the RR does not depend on a specific 0, > 1, it is UMP.
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10.97 Note that (N, N2, N3) is trinomial (multinomial with k = 3) with cell probabilities as
given in the table.
a. The likelihood function is simply the probability mass function for the trinomial:

L(0) = {
nl 2 3
b. Using part a, the best test for testing Hop: 6 = 0y vs. Ha: 6 = 0,, 09 < 03, is

2n;+n, n,+2n;,
LO) _[ 8 126017
L®,) |8, 1-6, '

Since we have that n, + 2n; = 2n — (2n; + ny), the RR can be specified for certain
values of S=2N; + N,. Specifically, the log—likelihood ratio is

sln£9—°j+(2n—s)1n[l_e°]<1nk,
0, -0,
1-0 0.1-0)\]"
s>|Ink=2nln| —2 ||x| In M =C
) 0,(1-0,)

So, the rejection region is given by {S =2N, +N, > c}.

j@zn‘ [26(1 —9)]nz (1-0)",0<0<1,n=n;+ny+n;.

or equivalently

c. To find a size a rejection region, the distribution of (N;, N, N3) is specified and with

S=2N; + N, a null distribution for S can be found and a critical value specified such
that P(S>c | 0p) = a.

d. Since the RR doesn’t depend on a specific 0, > 0y, it is a UMP test.

10.98 The density function that for the Weibull with shape parameter m and scale parameter 0.
a. The best test for testing Hp: 6 = 0y vs. Ha: 6 = 0,5, where 0y < 0,, 1s

LO) _(0a) ) (1 _1)§w o
L(ea)_(eoj exp{ (90 ea]Zilyi :|<k9

This simplifies to

-1
Zn yi" > - Ink +nln O | Lo L =C.
0, ) [0, o,

So, the RR has the form {T = ZLYim > C}, where ¢ is chosen so the RR is of size a.

To do so, note that the distribution of Y™ is exponential so that under H,
o _ 22 2

0, 0, 0,
is chi—square with 2n degrees of freedom. So, the critical value can be selected from
the chi—square distribution and this does not depend on the specific 8, > 0y, so the test

is UMP.
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b. When Hy is true, T/50 is chi-square with 2n degrees of freedom. Thus, ¥ 3, can be

selected from this distribution so that the RR is {T/50 > y 3.} and the test is of size o
=.05. If Ha is true, T/200 is chi—square with 2n degrees of freedom. Thus, we
require

B=P(T/50<y3, |10=400)=P(T /200 <1y, 10=400)=P(y’> <1yx3,)=.05.
Thus, we have that 1y %, =%>,. From Table 6 in Appendix III, it is found that the
degrees of freedom necessary for this equality is 12 =2n, so n = 6.

10.99 a. The best test is
T

L(ho) [ A

— 2 = 2| exp|n(A. =X, )<k,

) (21 el )
where T = Zin=1Yi . This simplifies to

Ink —n(x, -%,)
In(x, /2, )

and c is chosen so that the test is of size a.

b. SinceunderHy T = ZLYi is Poisson with mean nA, ¢ can be selected such that
P(T>c|A=Xk)=o0.

c. Since this critical value does not depend on the specific A4 > Ao, so the test is UMP.

d. It is easily seen that the UMP test is: reject if T <k'.

10.100 Since X and Y are independent, the likelihood function is the product of all marginal
mass function. The best test is given by

L 25 exp(—2m —2n)
L, (1) 3™ exp(-m/2-3n)
This simplifies to

= 4 (%)Zy‘ exp(-3m/2+n)<Kk.

(In4)>" %, +In(2/3)> " y, <K/,

and k' is chosen so that the test is of size a.

10.101 a. To test Hy: 0 = 0¢ vs. Ha: 6 = 05, where 04 < 0o, the best test is

L6 (82 o (L _ L)y
L(eaf(eoJ exp{ (90 ean‘ly‘}k'

Equivalently, this is
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> y.{nln[g ]+lnk:| {é_eﬂl:c’

and c is chosen so that the test is of size a (the chi—square distribution can be used — see
Ex. 10.95).

b. Since the RR does not depend on a specific value of 0, < 0y, it is a UMP test.

10.102 a. The likelihood function is the product of the mass functions:

L(p)=p™ (1-p)" ™.
1. It follows that the likelihood ratio is

f n-3y; 2y n
L(P,) _ ™ (1= p))"™ =(po(l— pa)j y (1— poj _
L(p.)  p. " (1-p)"™ (p(1-py)) (1-p,
ii. Simplifying the above, the test rejects when

pa) l_po
ley, (pa( po)j nln(—l_pa]<lnk.

Equivalently, this is
-1
I B A e
" 1_pa pa(l_po)

i11i. The rejection region is of the form { z:zl y, >C}.

b. For a size a test, the critical value C is such that P(Z:in:lYi >c|p,)=oa. Under Hy,

Z::lYi is binomial with parameters n and po.

c. Since the critical value can be specified without regard to a specific value of p,, this is
the UMP test.

10.103 Refer to Section 6.7 and 9.7 for this problem.
a. The likelihood function is L(0) =07"1,,(y,). To test Ho: 6 = 0p vs. Ha: 0 = 04,
where 0, < 0y, the best test is
@:[e_aj” oo, V) _
LO) 8y ) oo, (Yiny)
So, the test only depends on the value of the largest order statistic Y(,), and the test
rejects whenever Yy is small. The density function for Yy is g,(y)=ny"'0™", for
0 <y <86. For a size a test, select ¢ such that
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n

o=P(Y,, <c|0=6,)=[ny""6;"dy = ;—
0

n°
0

s0 ¢ =00, So, the RR is {Y(n) < 0pa'"}.
b. Since the RR does not depend on the specific value of 0, < 8y, it is UMP.

10.104 Refer to Ex. 10.103.
a. Asin Ex. 10.103, the test can be based on Y. In the case, the rejection region is of
the form {Y > c}. For a size a test select ¢ such that

0, n
o =P(Y,, >c|0=0,)= [ny"'6;"dy =1—g—n,

0
s0C=0(1 —a)'™

b. Asin Ex. 10.103, the test is UMP.
c. Itis notunique. Another interval for the RR can be selected so that it is of size a
and the power is the same as in part a and independent of the interval. Example:

choose the rejection region C = (a,b) U (6,,%), where (a,b) = (0,0,). Then,

a=P(a<Y, <bl6,)=" 2"
e0
The power of this test is given by
P@ <Yy <b[0.)+P(¥y >0, [6,)= b e_na + eag_neo :(oc—l)g_gﬂ,

which is independent of the interval (a, b) and has the same power as in part a.

10.105 The hypotheses are Ho: 6* = o, vs. Ha: o’ > o;. The null hypothesis specifies
Q, ={c”:6° =c,}, so in this restricted space the MLEs are (i =Y, .. For the
unrestricted space Q, the MLEs are [1 =y, while

62 = max{cgyﬁzr_l(yi — y)Z} .

The likelihood ratio statistic is

_L(©y) :(6_2 j exol > -y N > -y |

L) \o; 20; 267

A

If 6 =c;,A=1. If 6" > o,
/2

L L@y _ > =Y exp_zi_l(yi—y) N

L(Q) nc: 262 2

b

and H is rejected when A < k. This test is a function of the chi—square test statistic
x> =(n—1)S? /o] and since the function is monotonically decreasing function of Xz’
the test A < k is equivalent to y* > ¢, where C is chosen so that the test is of size a.
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10.106 The hypothesis of interest is Hy: p; = p2 = p3 = psa = p. The likelihood function is

10.107

10.108

Lm =1 ( Jp.y-(l P

Under H, it is easy to verify that the MLE of pis p = z; y;/800. For the
unrestricted space, P, =Y, /200 fori=1,2, 3, 4. Then, the likelihood ratio statistic is

% 2y, - & 8002y,
800 800

Vi 200-y,;
T [yj [1_vij
i={ 200 200

Since the sample sizes are large, Theorem 10.2 can be applied so that —2InA is
approximately distributed as chi—square with 3 degrees of freedom and we reject Hy if

—2Ini > X.205 =7.81. For the data in this exercise, y; = 76, Y, = 53, y3 =159, and y4 = 48.

Thus, —2InA = 10.54 and we reject Hy: the fraction of voters favoring candidate A is
not the sample in all four wards.

Let Xy, ..., Xpand Yy, ..., Y denote the two samples. Under Hy, the quantity
2 X=X+ (G =Y)  (n-DS? +(m-DS;

2 2
Gy Gy

V =

has a chi—square distribution with n + m — 2 degrees of freedom. If H, is true, then both
S; and S; will tend to be larger than Gé Under Hy, the maximized likelihood is

1
(Q ) (2 )n/2 n p(_%V).
In the unrestricted space, the likelihood is elther maximized at 6y or 65. For the former,
I-(Q )

the likelihood ratio will be equal to 1. But, fork <1,

<konlyif 6=0,. Inthis

ST SREN PEE REA

L) (o, St
which is a decreasing function of V. Thus, we reject Hy if V is too large, and the
rejection region is {V > y2 }.
The likelihood is the product ofalln=n; +n, + n; normal densities:
— X 1 n (yimw P N3 Wi_SZ}

L(©)= b exp A 0 (5 f 37 (o f a3 (o)
a. Under H, (unrestricted), the MLEs for the parameters are:

fi, =X, =Y, 0, =W,5] =L3" (X, - X)*, 63, &7 defined similarly.

Under Hy, 67 =63 =6 =o” and the MLEs are

case,
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n6; +n,6; +n,63
n
By defining the LRT, it is found to be equal to

) nl/Z(,\z)nz/Z(,\z)n3/2
}\’z(Gl) O, O
) n/2 °
o

b. For large values of ny, n,, and n3, the quantity —2InA is approximately chi—square
with 3—1=2 degrees of freedom. So, the rejection region is: —2InA > 5, =5.99.

f, =X 0, =Y, 0, =W,&" =

10.109  The likelihood function is L(®) = emle" exp[— (Z X /0, + 3y, /ez)].

a. Under Hy (unrestrlcted) the MLEs for the parameters are:
6 =X, 6 =Y.
Under Hy, 6, =0, =0and the MLE is
6=(mX +nY)/(m+n).
By defining the LRT, it is found to be equal to
xmy”"

(m)@-n? )m+n
m+n

7\/:

b. Since 222 , X; /0, is chi-square with 2m degrees of freedom and 22::1Yi /0, is

chi—square with 2n degrees of freedom, the distribution of the quantity under Hy
(22_"‘ X, 16)

F = =

(22 Y, /6)

2n
has an F—distribution with 2m numerator and 2n denominator degrees of freedom.
This test can be seen to be equivalent to the LRT in part a by writing

Xy R
A= ( )m+n = [)Tz(mf:)} [\r(nz(n:f:)} - [m+n F(m+n)} [an F+ m+n

=<|| x|

mX +nY
m+n

So, A is small if F is too large or too small. Thus, the rejection region is equivalent
to F > ¢, and F < ¢, where C; and C; are chosen so that the test is of size o.

10.110 This is easily proven by using Theorem 9.4: write the likelihood function as a function
of the sufficient statistic, so therefore the LRT must also only be a function of the
sufficient statistic.

10.111 a. Under Hy, the likelihood is maximized at 6y. Under the alternative (unrestricted)

hypothesis, the likelihood is maximized at either 0 or 6,. Thus, L(f)o) =L(6,) and
L(C2) = max{L(6,),L(0,)}. Thus,

L) _ L(6,) _ I

L)  max{L(6,).L(6,)} max{L L(6,)/L(6,)}
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b. Since max L L(éa VL = min{l, L(6,)/L(6,)}, we have A <k < I if and only if

L(6,)/L(6,) <k.

C. The results are consistent with the Neyman—Pearson lemma.

10.112 Denote the samples as X,...,X,and Y ,....,Y, , where n=n; +n,.
Under H, (unrestricted) the MLEs for the parameters are:

=X,0,=Y,6 (Z (X; = X)? +Z (Y, Y))
Under Ho, p, =u, =pand the MLEs are

= 2 1S (X ) Y (Y ).

By defining the LRT, it is found to be equal to

~2
Gy

,\"/2 .
7»=[G ] <k, or equivalently reject if {G J>k'
G

Now, write

Do X =7 =3 (X = X X =) = 30 (X = X)T 4 (X =),

D =) =30 (=Y Y )T =30 (Y =) 0, (V- )
and since fi=""X +2Y , and alternative expression for &, is

Do (X =X+ (Y =Y )T+ (XY
Thus, the LRT rejects for large values of
Lo (X =Y)*
2 O =X+ DY =Y’
Now, we are only concerned with p; > 1, in Ha, so we could only reject if X —Y > 0.
X-Y

JZ 0630 3 0 Y

This is equivalent to the two—sample t test statistic (> unknown) except for the
constants that do not depend on the data.

Thus, the test is equivalent to rejecting if is large.

10.113 Following Ex. 10.112, the LRT rejects for large values of
(X-Y)?
D (X =X) 4 3 (Y =Y )
Equivalently, the test rejects for large values of
X-¥]

I X =504 30 Y, =V

nn,
I+
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10.114

10.115

10.116

This is equivalent to the two—sample t test statistic (o> unknown) except for the
constants that do not depend on the data.

Using the sample notation Y, , ..., Y, .Yy, ..., Y5, 5 Y50, 000 Y5, withn=n; +ny +ns, we

In, »

have that under H, (unrestricted hypothesm) the MLEs for the parameters are:
R N X e D]

Under Hy, pu, =p, =p; =psothe MLEs are

3 n; Y. +1.Y, +n.Y-
N1 i _nY Y, +n5Y; A —L z Z
- nZiZIijlYij - n > “n i=1 j= 1( ij “)

Similar to Ex. 10.112, ny defining the LRT, it is found to be equal to

t)

2

n/2 ~2
k:(? j <k, or equivalently reject if (G J>k'
G, G

In order to show that this test is equivalent to and exact F test, we refer to results and
notation given in Section 13.3 of the text. In particular,
=SSE
né; = TSS =SST + SSE
Then, we have that the LRT rejects when
TSS SSE+SST 14 SST 14 MST ,

SSE  SSE SSE MSE "

where the statistic F = MST = SST/2 has an F—distribution with 2 numerator and

MSE SSE/(n-3)
n—-3 denominator degrees of freedom under Hy. The LRT rejects when the statistic F is
large and so the tests are equivalent,

L+1+F 52>k,

a. True

b. False: Hy is not a statement regarding a random quantity.

c. False: “large” is a relative quantity

d. True

e. False: power is computed for specific values in H,

f. False: it must be true that p—value < a

g. False: the UMP test has the highest power against all other a—level tests.
h. False: it always holds that A < 1.

I. True.

From Ex. 10.6, we have that

power(p)=1—-B(P)=1-P(Y-18/ <3 |p)=1-P(15<Y <21 |p).
Thus,
power(.2) =.9975 power(.3) =.9084 power(.4) =.5266
power(.5) =.2430
power(.6) =.9975 power(.7) =.9084 power(.8) =.5266
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10.117

10.118

10.119

10.120

10.121
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1.0

power
0.8
Il

0.6
I

0.4

0.0 0.2 0.4 0.6 0.8 1.0

A graph of the power function is above.

a. The hypotheses are Ho: 11 — po = 0 vs. Ha: pp — o # 0, where p; = mean nitrogen
density for chemical compounds and 1, = mean nitrogen density for air. Then,

sp = OB — 000001064 and [t] = 22.17 with 17 degrees of freedom. The p—
value is far less than 2(.005) = .01 so Hy should be rejected.

b. The 95% CI for p; — py is (—.01151, —.00951).
c. Since the CI do not contain 0, there is evidence that the mean densities are different.
d. The two approaches agree.

The hypotheses are Ho: 1 — p2 = 0 vs. Ha: 1y — p <0, where p; = mean alcohol blood
level for sea level and p, = mean alcohol blood level for 12,000 feet. The sample
statistics are 'y, =.10, s, =.0219, y, =.1383, s, =.0232. The computed value of the
test statistic is t =—2.945 and with 10 degrees of freedom, —t ;0 =—1.383 so Hj should be
rejected.

a. The hypotheses are Hy: p = .20, Ha: p > .20.
b. Let Y = # who prefer brand A. The significance level is
a=PY>92|p=.20)=P(Y>91.5|p=.20)=P(Z> 232)=P(Z> 1.44) = .0749.

Let u = mean daily chemical production.

a. Ho:pn=1100, Ha: p < 1100.

b. With .05 significance level, we can reject Hp if Z <—1.645.

c. For this large sample test, Z=—1.90 and we reject Hy: there is evidence that
suggests there has been a drop in mean daily production.

The hypotheses are Hy: 1 — po = 0 vs. Ha: g — po # 0, where py, p, are the mean
breaking distances. For this large—sample test, the computed test statistic is
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10.122

10.123

10.124

10.125

10.126

17| = |118-109]
102 87
10287

64 64

the null hypothesis: the mean braking distances are different.

=5.24. Since p—value = 2P(Z > 5.24) is approximately 0, we can reject

a. To test Ho: 67 = o3 vs. Ha: 6] > o3, where o}, o, represent the population
variances for the two lines, the test statistic is F = (92,000)/(37,000) = 2.486 with 49
numerator and 49 denominator degrees of freedom. So, with F ¢s = 1.607 we can reject
the null hypothesis.

b. p—value = P(F > 2.486) = .0009
Using R:

> 1-pF(2.486,49,49)

[1] 0.0009072082

a. Our test is Ho:6; = o3 vs. Ha: 6] # G5, where G, G, represent the population
variances for the two suppliers. The computed test statistic is F = (.273)/(.094) = 2.904
with 9 numerator and 9 denominator degrees of freedom. With a =.05, F s =3.18 so
Ho is not rejected: we cannot conclude that the variances are different.

b. The 90% Cl is given by (9('094) 9('094)) = (.050, .254). We are 90% confident that the

16.919 2 3.32511
true variance for Supplier B is between .050 and .254.

The hypotheses are Ho: 1; — o = 0 vs. Ha: iy — 1o # 0, where py, W, are the mean
strengths for the two materials. Then, Sf) =.0033 and t= % =9.568 with 17
.0033| —
9

degrees of freedom. With a = .10, the critical value is tys = 1.746 and so Hy is rejected.

a. The hypotheses are Hy: pa — g = 0 vs. Ha: pa — us # 0, where pa, 1 are the mean
efficiencies for the two types of heaters. The two sample means are 73.125, 77.667,

and sf) =10.017. The computed test statistic is L{Zfa =-2.657 with 12 degrees of
10.017| —+—
8 6
freedom. Since p—value =2P(T > 2.657), we obtain .02 < p—value < .05 from Table 5
in Appendix III.

b. The 90% CI for pua — pg is
73.125-77.667 i1.7821/10.017i§+ %) =-4.542 + 3.046 or (-7.588, —1.496).

Thus, we are 90% confident that the difference in mean efficiencies is between —7.588
and —1.496.

a. SE(0) =4V (0) = JaV(X)+aV(Y)+a V(W) =i+l

b. Since 0 is a linear combination of normal random variables, 0 is normally
distributed with mean 6 and standard deviation given in part a.
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c. The quantity (n, +n, +n;)S? /o is chi-square with nj+ny+n; — 3 degrees of freedom
and by Definition 7.2, T has a t—distribution with n;+n,+n; — 3 degrees of freedom.

d. A 100(1 — a)% CI for 0 is 0+ t,2S, f]—‘lz + i—fz + % , Where t,; is the upper—o/2 critical

value from the t—distribution with n;+n,+n;— 3 degrees of freedom.

. 6-0 o
e. Under Hy, the quantity t = ( - ‘Z)) = has a t—distribution with ny+n,+n; — 3
S a 4, 3 a8
Py m N n;

degrees of freedom. Thus, the rejection region is: [t| > ty.

10.127 LetP=X+Y —W. Then, P has a normal distribution with mean p; + p, — u3 and
variance (1 + a+ b)o’. Further, P = X +Y =W is normal with mean p, + pi, — p3 and
variance (1 +a + b)o*/n. Therefore,

7 - E_(Hf"“z — ;)

o (l+a+b)/n

is standard normal. Next, the quantities

Zin:l(xi -X’ Zinzl(Yi -Y)? Zin:1(\Ni ~-W)’
2 ) -

M

c c bo®
have independent chi—square distributions, each with n — 1 degrees of freedom. So,
their sum is chi—square with 3n — 3 degrees of freedom. Therefore, by Definition 7.2,
we can build a random variable that follows a t—distribution (under Hy) by
Pk

S,\(I+a+by/n’
where S2 =@i”=l(xi XY T (=YY (W W )2)/(3n—3). For the test,

we reject if [t| > t s, where t 25 is the upper .024 critical value from the t—distribution
with 3n— 3 degrees of freedom.

10.128 The point of this exercise is to perform a “two—sample” test for means, but information
will be garnered from three samples — that is, the common variance will be estimated
using three samples. From Section 10.3, we have the standard normal quantity

7 - )T_Y__(“'l —U,)
O\ o
As in Ex. 10.127, @L(xi XY Y=Y Y W, —\/\_/)2) o’ has a chi—
square distribution with n;+n,+n; — 3 degrees of freedom. So, define the statistic

S2 =(Zi";(><i XYY =YY W, —VV)z)/(nl +n, +n, —3)




230

www.elsolucionario.net

Chapter 10: Hypothesis Testing

Instructor’s Solutions Manual

10.129

10.130

X=Y —(u, —u,)
Spit+L

n N,

and thus the quantity T = has a t—distribution with n;+ny+n; — 3

degrees of freedom.
For the data given in this exercise, we have Hoy: py — o = 0 vs. Ha: 1y — i # 0 and with

Sp = 10, the computed test statistic is |t| = 100 — 3 326 with 27 degrees of freedom.

10, 2
10

Since t s = 2.052, the null hypothesis is rejected.

The likelihood function is L(®)=6," exp[—Z:in:l(yi —-0,)/0,]. The MLE for 0, is
é2 =Y, To find the MLE of 6;, we maximize the log-likelihood function to obtain
él = %Zin:l (Y, - éz) . Under Hy, the MLE:s for 0, and 6, are (respectively) 0, and

0, =Y, as before. Thus, the LRT is

- L(QO) _ (i] exp[ Zi:l(yi —Yu) N Zi:l()ii - y(1))]

L) (6, 0, 0,

ne1,0 e1,0

Values of A <k reject the null hypothesis.

Following Ex. 10.129, the MLEs are él = ﬁzin:l (Y, - éz) and é2 =Y. Under Hy, the

MLE:s for 6, and 6, are (respectively) 6, and ého = %Zin:l (Y, - 92’0) . Thus, the LRT is
given by

- L(Q,) _[ 0, J exp{ Zizl(}/i —0,,) N Zi:l()ii - y(1))] _ zizl()’i —Yu) '

L(Q) 0., 6, Zinzl(yi -0,,)

610
Values of A <k reject the null hypothesis.
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11.1

11.2

11.3

11.4

11.5

11.6

11.7

Using the hint, §(X) =8, +f,X=(y-B,X)+p,X=V.

a. slope = 0, intercept = 1. SSE =6.

b. The line with a negative slope should exhibit a better fit.

¢. SSE decreases when the slope changes from .8 to .7. The line is pivoting around the
point (0, 1), and this is consistent with (X, ¥ ) from part Ex. 11.1.

d. The best fit is: y = 1.000 + 0.700x.

The summary statistics are: X =0, ¥ = 1.5, Syy=—-6, Six=10. Thus, §y = 1.5 —.6X.

3.0

p11.3y

1.0 15

0.5
I

The graph is above.

The summary statistics are: X =72, ¥ =72.1, Syy = 54,243, Six = 54,714. Thus, § =
0.72 + 0.99x. When x = 100, the best estimate of y is ¥ =0.72 + 0.99(100) = 99.72.

The summary statistics are: X =4.5, ¥ =43.3625, Syy = 203.35, S,x =42. Thus, § =

21.575 +4.842x. Since the slope is positive, this suggests an increase in median prices
over time. Also, the expected annual increase is $4,842.

a. intercept = 43.362, SSE = 1002.839.

b. the data show an increasing trend, so a line with a negative slope would not fit well.
c. Answers vary.

d. Answers vary.

e.(4.5,43.3625)

f. The sum of the areas is the SSE.

a. The relationship appears to be proportional to X°.

b. No.
¢. No, it is the best linear model.

231
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11.8

11.9

11.10

11.11

11.12

The summary statistics are: X = 15.505, § = 9.448, Syy = 1546.459, Syx = 2359.929.
Thus, § =-0.712 + 0.655x. When X = 12, the best estimate of y is § =—.712 +
0.655(12) = 7.148.

a. See part c.
b. § =-15.45+65.17x.

p11.9y

T T T T T
16 1.8 20 22 24

p11.9x

c. The graph is above.
d. When x = 1.9, the best estimate of yis § =—-15.45+ 65.17(1.9) = 108.373.

’ " A X X Yi
:_2Zi=1(yi —Bxx, :_2zi:1(xi Yi _leiz)zoj so B, :%—XZ.

dSSE
dp,

Since > Xy, =134,542and Y x’ =53,514, B, =2.514.

The summary statistics are: X =20.4, Y =12.94, S,y =—425.571, S« = 1859.2.
a. The least squares line is: ¥ =17.609 — 0.229x.
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p11.12y
12 14 16 18 20

10

b. The line provides a reasonable fit. PLLIZX

¢. When X = 20, the best estimate of y is ¥ = 17.609 — 0.229(20) = 13.029 Ibs.

11.13  The summary statistics are: X =6.177, § = 270.5, Syy =—-5830.04, Syx = 198.29.
a. The least squares line is: § =452.119 —29.402x.

p11.13y
400 500
| |

300
I

200
I

p11.13x

b. The graph is above.

11.14  The summary statistics are: X =.325, § =.755, Syy =—.27125, Syx = .20625
a. The least squares line is: § = 1.182 — 1.315x.
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1.0

p11.14y
08
Il

0.6
I

0.4

T T T T T
0.1 0.2 0.3 0.4 0.5

pll.14x

b. The graph is above. The line provides a reasonable fit to the data.

115 a.SSE =37 (y, =By —Bx)’ =2 [y, = V=B, (= 0F =2 (¥, =¥)")
B (=X =2B, D (Vi — V(X —X)
= Zin:l(yi - 7)2 +Blsxy _ZBley = Syy _Blsxy .

b. Since SSE=S —BISXy ,
S, =SSE+B,S,, =SSE+(S,,)*/S,. But, Si>0and (Sy)’>0. So,
S, >SSE.

W=

11.16  The summary statistics are: X =60, Y =27, Syy =—1900, Sy, = 6000.
a. The least squares line is: § =46.0 —.31667x.

p11.16y

30 40 50 60 70 80 90

p11.16x

b. The graph is above.
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A

¢. Using the result in Ex. 11.15(a), SSE= S —f,S,, =792 - (-.31667)(-1900) =
190.327. So, s*=190.327/10 = 19.033.

a. With Sy, = 1002.8388 and S,y = 203.35, SSE = 1002.8388 — 4.842(203.35) = 18.286.
So, s* = 18.286/6 = 3.048.

b. The fitted line is § =43.35 + 2.42x". The same answer for SSE (and thus s?) is
found.

a. For Ex. 11.8, Syy = 1101.1686 and SX¥= 1546.459, SSE = 1101.1686 —
.6552528(1546.459) = 87.84701. So, s” = 87.84701/8 = 10.98.

b. Using the coding X = x; — X, the fitted line is § = 9.448 + .655x". The same answer
for s* is found.

The summary statistics are: X =16, ¥ =10.6, Sy = 152.0, Sy = 320.
a. The least squares line is: § = 3.00 + 4.75x.

p11.19y

T T T
10 15 20

p11.19x

b. The graph is above.
c. §°=5.025.

The likelihood function is given by, K = (G 2n )n ,
L(B,.B,) = KeXp{— Zi”:l(yi -By —BX )2}, so that

1 n 2
InL(B,.B,)=InK - 762 zizl(yi —Bs _lei) .

Note that maximizing the likelihood (or equivalently the log—likelihood) with respect to

26?2

Bo and PB; is identical to minimizing the positive quantity Z:in:l(yi —By =B )2 . This is

the least—squares criterion, so the estimators will be the same.
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11.21

11.22

11.23

11.24

11.25

11.26

Using the results of this section and Theorem 5.12,
Cov(B,,B,) = Cov(Y —B,X,B,) = Cov(Y,B,) - Cov(B,X,p,) =0-XV(B,).
Thus, Cov(B,.B,) = —Xc’/S,,. Note thatif " x,=0, X =0so Cov(B,.p,) =0

From Ex. 11.20, let = 6 so that the log—likelihood is
InL(0) = —21n(2m) - lnG—% (=B =B )
Thus,

IO = s 3 (3B, B

The MLE is 6 =67 = %Z::l(yi —B, =B, )’ , but since By and B, are unknown, we can
insert their MLEs from Ex. 11.20 to obtain:

&’ :%z:zl(yi _60 _lei )2 =+SSE.

From Ex. 11.3, it is found that Syy = 40
a. Since SSE =4 — (—.6)(—6) = .4, s* = .4/3 = .1333. To test Hy: p; =0 vs. Ha: 1 #0,

It|= 1‘332'(1 = 5.20 with 3 degrees of freedom. Since t s = 3.182, we can reject Ho.

b. Since tgos =5.841 and ty; =4.541, .01 < p—value <.02.
Using the Applet, 2P(T > 5.20) = 2(.00691) = .01382.

c. —6+3.182+.13334.1 =—.6+.367 or (-.967, —.233).

To test Hy: B =0 vs. Ha: B1 # 0, SSE = 61,667.66 and s> =5138.97. Then,

It|= % = 5.775 with 12 degrees of freedom.

a. From Table 5, P(|T| > 3.055) = 2(.005) = .01 > p—value.
b. Using the Applet, 2P(T > 5.775) = .00008.
¢. Reject Hy.

From Ex. 11.19, to test Hy: B; =0 vs. Ha: B1 #0, s> =5.025 and Syx = 320. Then,

[t]= J% =3.791 with 8 degrees of freedom.

From Table 5, P(|T| > 3.355) = 2(.005) = .01 > p—value.

Using the Applet, 2P(T > 3.791) = 2(.00265) = .0053.

Reject Hy.

We cannot assume the linear trend continues — the number of errors could level off
at some point.

e. A 95% CI for B;: .475 +2.306+/5.025/320 = .475 £ .289 or (.186, .764). We are
95% confident that the expected change in number of errors for an hour increase of
lost sleep is between (.186, .764).

R S

The summary statistics are: X =53.9, ¥ =7.1, Syy = 198.94, S« = 1680.69, Syy = 23.6.
a. The least squares line is: § =0.72 + 0.118Xx.
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b. SSE=23.6—.118(198.94) = .125s0 s> =.013. A 95% CI for B is 0.118 +

2.776+/.013+/.00059 =0.118 = .008.
¢. When x =0, E(Y) = Bo + B1(0) = Bo. So, to test Hy: Bo =0 vs. Ha: Bo # 0, the test

statistic is |t |= JonsT = 4.587 with 4 degrees of freedom. Since tos = 4.604 and

tor = 3.747, we know that .01 < p—value <.02.
d. Using the Applet, 2P(T > 4.587) =2(.00506) = .01012.
e. Reject Hy.

Assuming that the error terms are independent and normally distributed with 0 mean
and constant variance 6°:

Bi B Bi,o

ofor
Furthermore, V = (n—2)S* /o> has a chi—square distribution with n — 2 degrees of
freedom. Therefore, by Definition 7.2,

Z _ Bi _Bi,o

Wim=-2)  syc;

has a t—distribution with n — 2 degrees of freedom under Hy fori =1, 2.

a. We know that Z = has a standard normal distribution under HO.

b. Using the pivotal quantity expressed above, the result follows from the material in
Section 8.8.

Restricting to €y, the likelihood function is
1 n 5
L(QO) = (2n)n1/20n eXp[_ 2(72 Zi:l (y| - BO) } .
It is not difficult to verify that the MLEs for B and o” under the restricted space are Y
and ﬁzin:] (Y, =Y )* (respectively). The MLEs have already been found for the
unrestricted space so that the LRT simplifies to
N n N n n/2
L@y 2L LSSEJ |
L@ | XL -9 Sy

So, we reject if A <k, or equivalently if

/2

—Syy >k =k'.
SSE
Using the result from 11.15,

SSE+BISXV_1+BISXV_1+ BiSy _,, T’

=1+ )
SSE SSE (n—2)S (n—2)

P is large in magnitude, where C,; = —
Cll XX

So, we see that A is small whenever T =

This is the usual t—test statistic, so the result has been proven.
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11.29

11.30

11.31

Let ﬁl and Yy, be the least—squares estimators for the linear models Y; = o + BiXi + &
and Wj= vy, + v1Cj + & as defined in the problem Then, we have that:

« EB,-7)=Bi-m
o V(f%l —¥,)= Gz(s—ix+§),where Se =ZL(Ci -C)’

o [31 — ¥, follows a normal distribution, so that under Hy, B; —y; = 0 so that

7 — B1 _?1

1 _}_SL

cc

is standard normal

G4/ \s

XX

o LetV=SSEy+SSEy= Y (Y,-Y,)’+> " (W,-W,)’. Then,V/c’ hasa

chi—square distribution with n + m — 4 degrees of freedom

e By Definition 7.2 we can build a random variable with a t—distribution (under
H())I

T= Z __ By , where S = (SSEy + SSEw)/(n + m —4).

Winrm—a) s +q)

H, is rejected in favor of H, for large values of |T|.

a. For the first experiment, the computed test statistic for Hp: B; =0 vs. Ha: B1 #0is t; =
(.155)/(.0202) = 7.67 with 29 degrees of freedom. For the second experiment, the
computed test statistic is t; = (.190)/(.0193) = 9.84 with 9 degrees of freedom. Both of
these values reject the null hypothesis at o = .05, so we can conclude that the slopes are
significantly different from 0.

b. Using the result from Ex. 11.29, S =(2.04 +1.86)/(31+11-4)=.1026. We can
extract the values of Syx and S¢; from the given values of V( Bl ):

_ SSE, /(n—2) 2.04/29

vy (0202)

so similarly Scc = 554.825. So, to test equality for the slope parameters, the computed
test statistic is

=172.397,

.155-.190 |

102400 + ws)

with 38 degrees of freedom. Since t s = Z,025 = 1.96, we fail to reject Hp: we cannot
conclude that the slopes are different.

It =1.25

Here, R is used to fit the regression model:

> x <- c¢(19.1, 38.2, 57.3, 76.2, 95, 114, 131, 150, 170)
>y <- c(.095, .174, .256, .348, .429, .500, .580, .651, .722)
> summary(Im(y~x))

Call:
Im(formula = y ~ x)
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Residuals:
Min 10 Median 3Q Max
-1.333e-02 -4.278e-03 -2.314e-05 8.056e-03 9.811e-03

Coefficients:

Estimate Std. Error t value Pr(G|t])
(Intercept) 1.875e-02 6.129e-03 3.059 0.0183 *
X 4.215e-03 5.771e-05 73.040 2.37e-11 ***

Signif. codes: 0O "**** 0.001 **** 0.01 **" 0.05 *." 0.1 * = 1

Residual standard error: 0.008376 on 7 degrees of freedom
Multiple R-Squared: 0.9987, Adjusted R-squared: 0.9985
F-statistic: 5335 on 1 and 7 DF, p-value: 2.372e-11

From the output, the fitted model is § =.01875 +.004215x. To test Hop: f; = 0 against
Ha: B1 # 0, note that the p—value is quite small indicating a very significant test statistic.
Thus, Hy is rejected and we can conclude that peak current increases as nickel
concentrations increase (note that this is a one—sided alternative, so the p—value is
actually 2.37e-11 divided by 2).

11.32 a.From Ex. 11.5, ﬁl =4.8417 and Syx =42. From Ex. 11.15, s? =3.0476 so to test Ho:

B1 =0 vs. Ha: B1 > 0, the required test statistic is t = 17.97 with 6 degrees of freedom.
Since to; = 3.143, Hy is rejected: there is evidence of an increase.

b. The 99% CI for B, is 4.84 + 1.00 or (3.84, 5.84).

1133 Using the coded X’s from 11.18, B =.655 and 5* = 10.97. Since Soc= > (x; ' =

i=1\ !

2360.2388, the computed test statistic is |t |= 9 — 962 with 8 degrees of

10.97
2360.2388

freedom. Since t g5 = 2.306, we can conclude that there is evidence of a linear
relationship.

11.34  a. Since tos = 3.355, we have that p—value <2(.005) =.01.
b. Using the Applet, 2P(T <9.61) =2(.00001) = .00002.

11.35 Withay=1anda; = X*, the result follows since

oL ST ()2 —2x"x i(z_" X7 —nX? J+(x7)? = 2x" X+ X°
VB, +B,Xx )= HZI=1 S( ) o’ =" 1=l )S( ) c

:%Sxx-i_(x*_x)2 (722 l+(X*_Y)2 02
S n S '

XX XX
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This is minimized when (X" —X)* =0,s0 X =X.

11.36  From Ex. 11.13 and 11.24, when X' =5, § =452.119 — 29.402(5) = 305.11 so that

V(YA ) is estimated to be 402.98. Thus, a 90% CI for E(Y) is 305.11 +£1.782+4/402.98 =
305.11 £ 35.773.

11.37 From Ex. 11.8 and 11.18, when X =12, § =7.15 so that V(YA ) is estimated to be
(12 -15.504)*
2359929
7.15+£2.477 or (4.67, 9.63).

10.97{1 + } =1.154 Thus, a 95% CI for E(Y) is 7.15 £ 2.306+1.154 =

11.38 Refer to Ex. 11.3 and 11.23, where §?= 1333, ¥y =1.5-.6%,S=10and X =0.
e Whenx =0, the 90% CI for E(Y) is 1.5 + 2.353 -1333(%) or (1.12, 1.88).

e When X =-2, the 90% CI for E(Y) is 2.7 + 2.353 {13333 +55) or (2.03,3.37).
e When X =2, the 90% CI for E(Y) is .3 + 2.353/.1333(+ + %) or (-.37,.97).

p11.3y

On the graph, note the interval lengths.

11.39  Refer to Ex. 11.16. When X =65, ¥ =25.395 and a 95% CI for E(Y) is

2
25395+ 2.228\/19.033[%+M} or 25.395 + 2.875.

6000

11.40  Refer to Ex. 11.14. When X = .3, ¥y =.7878 and with SSE = .0155, Sx=.20625, and

_ 2
O1S5[ 1 (3=329| oo iy,
8 |10 20625

X =.325, the 90% CI for E(Y) is .7878 + 1.86 \/
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11.46

11.47

11.48
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a. Using BO =Y_—[31K and [31 as estimators, we have i, :\7—[31)_(+[31u so that

fi, =Y =B, (X—p,).
b. Calculate V(fi,) =V (V) + (X — 1, )V (B,) = &+ (R —p1,) & = o* [+ 2.

From Ex. 11.4, s> =7.1057 and Sy = 54,714 so that f, =72.1+.99(74 -72) =74.08

X

and the variance of this estimate is calculated to be 7.1057[%0 4y J =.711. The

54,714
two—standard deviation error bound is 2+/.711 = 1.69.

Similar to Ex. 11.35, the variance is minimized when x = X.

Refer to Ex. 11.5 and 11.17. When x =9 (year 1980), ¥ = 65.15 and the 95% Pl is
65.15+2.447,/3.05(1 + L+ U9 = 65.15 + 5.42 or (59.73, 70.57).

4

For the year 1981, x=10. So, § =69.99 and the 95% Pl is
69.99 +2.447,/3.05(1 + L + 124 | = 69.99 + 5.80.

For the year 1982, x=11. So, § = 74.83 and the 95% Pl is
74.8342.447,3.05(1+ L+ L5 ) = 74,83 £ 6.04.

42

Notice how the intervals get wider the further the prediction is from the mean. For the
year 1988, this is far beyond the limits of experimentation. So, the linear relationship
may not hold (note that the intervals for 1980, 1981 and 1982 are also outside of the
limits, so caveat emptor).

From Ex. 11.8 and 11.18 (also see 11.37), when X' = 12, § = 7.15 so that the 95% PI is

1, (12-15.504)°
10 2359.929

7.15 + 2.306\/10.97{1 + } =7.15+8.03 or (—.86, 15.18).
From 11.16 and 11.39, when X" = 65, § =25.395 so that the 95% PI is given by

2
25.395 + 2.228 [19.033[ 14 -1 (02~ 00°
12 6000

} =25.395+10.136.

From Ex. 11.14, when X" = .6, § =.3933 so that the 95% PI is given by

_ 2
3933+ 2.306,1.00194| 1+~ 4 LO=32)
0 20625

} =.3933 + .12 or (.27, .51).

The summary statistics are Syx = 380.5, Syy = 2556.0, and Syy = 19,263.6. Thus, r = .944.
To test Hyp: p =0 vs. Ha: p> 0, t = 8.0923 with 8 degrees of freedom. From Table 7, we
find that p—value < .005.
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11.49

11.50

11.51

11.52

11.53

11.54

11.55

11.56

a. r’ behaves inversely to SSE, since I’ = 1 — SSE/Sy,.
b. The best model has r* = .817, so r = .90388 (since the slope is positive, I is as well).

a. r’ increases as the fit improves.
b. For the best model, r* =.982 and so r = .99096.
c. The scatterplot in this example exhibits a smaller error variance about the line.

The summary statistics are Syx = 2359.929, Sy = 1546.459, and Syy=1101.1686. Thus,
r=.9593. Totest Hy: p=0vs. Ha: p#0, |t| = 9.608 with 8 degrees of freedom. From
Table 7, we see that p—value < 2(.005) = .01 so we can reject the null hypothesis that the
correlation is 0.

a. Since the slope of the line is negative, r = —«/r_2 =—+/.61 =-781.
b. This is given by I, so 61%.
¢. To test Ho: p=0vs. Ha: p <0, t = =892 = _4 33 with 12 degrees of freedom.

V1-(~781)2
Since —t s =—1.782, we can reject Hp and conclude that plant density decreases with
increasing altitude.

a. This is given by I’ = (.8261)” = .68244, or 68.244%.
b. Same answer as part a.

= . _ _8261J8  _ . .
c. TotestHp: p=0vs. Ha: p>0, t = =TT 4.146 with 8 degrees of freedom. Since

tor = 2.896, we can reject Hp and conclude that heights and weights are positively
correlated for the football players.

d. p-value = P(T > 4.146) = .00161.

a. The MOM estimators for 65 and o were given in Ex. 9.72.

b. By substituting the MOM estimators, the MOM estimator for p is identical to r, the
MLE.

Since B, = Sy /Sy and r= Bm/Sxx /S,, , we have that the usual t—test statistic is:
T = Bl :‘\/Sxxﬁl\‘n_z:\/Sxx/syyﬁl\/n—zzrdn_z
\/S/SXX \/Syy —ﬁlsxy 1_ﬁ15xy/syy [1—y2

Here, r = 8.

Forn=35,t=2.309 with 3 degrees of freedom. Since tos =2.353, fail to reject Hy.
Forn =12, t=4.2164 with 10 degrees of freedom. Here, tys = 1.812, reject H,.
For part a, p—value = P(T > 2.309) = .05209. For part (b), p—value = .00089.

Different conclusions: note the 4N —2 term in the numerator of the test statistic.

The larger sample size in part b caused the computed test statistic to be more
extreme. Also, the degrees of freedom were larger.

P ae oy
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11.57 a. The sample correlation r determines the sign.
b. Both r and n determine the magnitude of |t|.

11.58 For the test Hy: p =0 vs. Ha: p > 0, we reject if t = %2 tos = 2.92. The smallest value

of r that would lead to a rejection of Hy is the solution to the equation

r=22v1-r".

Numerically, this is found to be r = .9000.

11.59  For the test Hp: p=0 vs. Ha: p <0, we reject if t = %S —tos =—1.734. The largest

value of r that would lead to a rejection of Hy is the solution to the equation

_ -1.734 _r2
r==r 1-r".

Numerically, this is found to be r =—-.3783.

11.60  Recall the approximate normal distribution of 1 ln(”') given on page 606. Therefore,

for sample correlations r; and r,, each being calculated from independent samples of
size n; and N, (respectively) and drawn from bivariate normal populations with
correlations coefficients p; and p; (respectively), we have that

in(e ) tin(t )~ [rin(2) - L in(te)

is approximately standard normal for large n; and n.
Thus, to test Hop: p1 = p2 vs. Ha: p1 # p2 with r; =.9593, n; = 10, r; = .85, n, = 20, the

computed test statistic is
9593 1.8
_stolig)-smC) )
- S2.

NN
Since the rejection region is all values |z| > 1.96 for a = .05, we fail to reject Ho.

11.61 Refer to Example 11.10 and the results given there. The 90% PI is
979 +2.132(. 045)\/1 +14 USUS = 979 4 104 or (.875, 1.083).

234

11.62  Using the calculations from Example 11.11, we have r = 22 = 9904. The

SSyy

proportion of variation described is r* = (.9904)* = .9809.

11.63  a. Observe that InE(Y) = Inag — a;X. Thus, the logarithm of the expected value of Y is
linearly related to X. So, we can use the linear model
Wi = Bo + Bixi + &i,
where w; = Iny;, Bo = Inap and B;=— a,;. In the above, note that we are assuming an
additive error term that is in effect after the transformation. Using the method of least
squares, the summary statistics are:
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X =5.5, X*=1385, W = 3.5505, Suw = —.7825, S = 82.5, and Sy = .008448.
Thus, B, =—.0095, B, =3.603 and &, =—(~.0095) =.0095, &, = exp(3.603) = 36.70.

Therefore, the prediction equation is § = 36.70e "%

b. To find a CI for ay, we first must find a CI for By and then merely transform the

endpoints of the interval. First, we calculate the SSE using SSE = Sy —Bl Sw=
008448 — (—.0095)(—.782481) = .0010265 and so s’ = (.0010265)/8 =.0001283 Using
the methods given in Section 11.5, the 90% CI for By is

3.6027 + 1.86,.0001283(r355< ) or (3.5883, 3.6171). So the 90% CI for g is given by

10(82.5

(293, &%) = (36.17,37.23).

This is similar to Ex. 11.63. Note that InE(Y) = -0 x* and In[-InE(Y)] = Inay + o Inx.
So, we would expect that In(—Iny) to be linear in Inx. Define w; = In(—Iny;), t; = Inx;, Bo =
Inay, Bi=a;. So, we now have the familiar linear model
Wi = Bo + Biti + &i

(again, we are assuming an additive error term that is in effect after the transformation).
The methods of least squares can be used to estimate the parameters. The summary
statistics are

t =-1.12805, W =-1.4616, Sy, = 3.6828, and Sy = 1.51548

So, B, =2.4142, B, = 1.2617 and thus 6, =2.4142 and 6, = exp(1.2617) = 3.5315.
This fitted model is § = exp(— 3.5315x>4* )

Ify is related to t according toy =1 — e ™ then —In(1 —y) = Bt. Thus, let w;j =—In(1 — ;)
and we have the linear model
Wi = Bti + &

(again assuming an additive error term). This is the “no—intercept” model described in

Zinzl LW,

Ex. 11.10 and the least squares estimator for [ is given to be ﬁ =————_. Now, using

Zin:l tiz

. 2 "W, — W)
similar methods from Section 11.4, note that V(B) = © and SSE = Z':l( )

DI o
is chi—square with n — 1 degrees of freedom. So, by Definition 7.2, the quantity
c__B-p

S/t

where S = SSE/(n — 1), has a t—distribution with n — 1 degrees of freedom.

A 100(1 — )% CI for B is
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1

Zinzl tiz

and ty is the upper— o/2 critical value from the t—distribution with n — 1 degrees of
freedom.

B x toc/ZS

11.66  Using the matrix notation from this section,

1 -2 3
1 -1 2
75 5 0
X=[1 0 Y=|1 X'Y{ } X'X{ }
-6 0 10
1 1 1
12 5
. [5 077571 [2 07[7.5] [1.5 .
Thus, = = = so that y=1.5-.6X.
0 10| |-6] |0 .1||-6| |-.6
1 -1 3]
1 0 2
7.5 55
11.67 X=|1 1 Y=|1 X’Y:{ } X'X{ }
1.5 5 15
1 2 1
13 5

3 -1 ~ | 2.1
The student should verify that (X'X)™ = [ {1 } so that g = [ 6} . Not that the

slope is the same as in Ex. 11.66, but the y—intercept is different. Since XX is nota
diagonal matrix (as in Ex. 11.66), computing the inverse is a bit more tedious.

I -3 9 1

1 -2 4 0

I -1 1 0 -1 7 0 28
1168 X=|1 0 0 Y=|-1 XY=| 4 XX=|/0 28 0

I 1 1 -1 8 28 0 196

1 2 4 0

I 3 9 0

The student should verify (eithe_r us_ing Appendix I or a computer),
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11.70

3333 0 —.04762 —.714285
(XX)"' = 0 .035714 0 so that ﬁ =|—.142857 | and the fitted
—.04762 0 011905 .142859

model is § =—.714285—.142857x +.142859x".

p11.68y

p11.68x

The graphed curve is above.

For this problem, R will be used.
> x <- ¢(-7, -5, -3, -1, 1, 3, 5, 7)
>y <- ¢(18.5,22.6,27.2,31.2,33.0,44.9,49.4,35.0)

a. Linear model:

> Im(y~X)
Call:
Im(formula = y ~ xX)
Coefficients:
(Intercept) X
32.725 1.812 «— §y=32.725+1.812x

b. Quadratic model
> Im(y~x+1(x"2))

Call:
Im(formula =y ~ x + 1(X"2))
Coefficients:
(Intercept) X 1(x"2)
35.5625 1.8119 -0.1351 <« 9::35.56254—1.8119X——.1351X2

, , 721 ~|.719805
a. The student should verify that Y'Y =105817, X'Y = ,and f = .
106155 991392

So, SSE = 105,817 — 105,760.155 = 56.845 and s* = 56.845/8 = 7.105625.
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b. Using the coding as specified, the data are:

x; | 62| 60|63 |-45|-25| 40 | -36| 169 |13 95
y | 9 [ 14| 7 [29]45|109] 40 [238| 60 70

" 721 e |10 0
The student should verify that X ¥ = , X X = and
54243 0 54,714

~ 721
k= { 991392} . So, SSE = 105,817 — 105,760.155 = 56.845 (same answer as part a).

Note that the vector a is composed of k 0’s and one 1. Thus,
E(B))=E@p)=a'E(p)=2a"B =P,
V() =V@p)=aEBa=a'c"(XX)"a=c"a'(XX) 'a=c;0°

Following Ex. 11.69, more detail with the R output is given by:
> summary (Im(y~x+1(x"2)))

Call:
Im(formula = y ~ x + 1(x"*2))
Residuals:
1 2 3 4 5 6 7 8
2.242 -0.525 -1.711 -2.415 -4.239 5.118 8.156 -6.625
Coefficients:
Estimate Std. Error t value Pr(c|t])
(Intercept) 35.5625 3.1224 11.390 9.13e-05 ***
X 1.8119 0.4481 4.044 0.00988 **
1(x"2) -0.1351 0.1120 -1.206 0.28167

Signif. codes: 0 "**** 0.001 **** 0.01 **" 0.05 *." 0.1 * = 1

Residual standard error: 5.808 on 5 degrees of freedom
Multiple R-Squared: 0.7808, Adjusted R-squared: 0.6931
F-statistic: 8.904 on 2 and 5 DF, p-value: 0.0225

a. To test Hp: B2 = 0 vs. Ha: B2 # 0, the computed test statistic is t =—1.206 and p—value
=.28167. Thus, Hyp would not be rejected (no quadratic effect).

b. From the output, it is presented that w/Q ([32) =.1120. So, with 5 degrees of

freedom, tps = 3.365 so a 90% for B, is — 1351 + (3.365)(.1120) =—.1351 = .3769 or
(=512, .2418). Note that this interval contains 0, agreeing with part a.

If the minimum value is to occur at X = 1, then this implies B; + 2, = 0. To test this
claim, leta’=[0 1 2] for the hypothesis Ho: B; + 2P, =0 vs. Ha: B; + 2B, # 0. From
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11.76

Ex. 11.68, we have that , + 28, =.142861, s* = .14285 and we calculate a'(X'X)'a=

.083334. So, the computed value of the test statistic is |t |= % =1.31 with 4

degrees of freedom. Since t 5 =2.776, Hy is not rejected.

a. Each transformation is defined, for each factor, by subtracting the midpoint (the
mean) and dividing by one—half the range.

b. Using the matrix definitions of X and ¥, we have that

338 (16 0 0 0 0] [ 21.125 |
-50.2 0 16 0 0 0 -3.1375
XY=-194| XX=/0 0 16 0 0 |sothat f=|-12125].
-2.6 0 0 0 16 0 —.1625
—20.4 0 0 0 0 16 | —1.275 |

The fitted model is § =21.125-3.1375x, —1.2125%, —.1625x, —1.275X, .

c. First, note that SSE= Y'Y — /;”X'Y = 7446.52 — 7347.7075 = 98.8125 so that s> =
08.8125/(16 — 5) = 8.98. Further, tests of Hy: i =0 vs. Hp: i #0 fori=1, 2, 3, 4, are
B _ 4B
sJo. V398
four computed test statistics are t; =—4.19, t, =—1.62, t; =—22 and t4 = —1.70. Thus,
only the first hypothesis involving the first temperature factor is significant.

and H is rejected if [tj| > tpos = 3.106. The

based on the statistic t; =

With the four given factor levels, we havea’=[1 —1 1 —1 1]andso a'(X'X) 'a=

5/16. The estimate of the mean of Y at this setting is
Yy =21.125+3.1375-1.2125+.1625-1.275 = 21.9375

and the 90% confidence interval (based on 11 degrees of freedom) is
21.9375+£1.7964/8.96~4/5/16 =21.9375+3.01 or (18.93, 24.95).

First, we calculate s> = SSE/(n —k —1) = 1107.01/11 = 100.637.
a. To test Hp: B2 =0 vs. Hp: B2 <0, we use the t—test with Cy, = 8.1-107*:

t= 92 =-3.222.
4/100.637(.00081)

With 11 degrees of freedom, —t s = —1.796 so we reject Hy: there is sufficient
evidence that 3, <O0.

b. (Similar to Ex. 11.75) With the three given levels, we have a’=[1 914 65 6]and
so a'(X'X)'a=92.76617. The estimate of the mean of Y at this setting is
Y =38.83-.0092(914) —.92(65)+11.56(6) = 39.9812
and the 95% CI based on 11 degrees of freedom is
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39.9812 +2.2014/100.637+/92.76617 =39.9812 + 212.664.

Following Ex. 11.76, the 95% PI is 39.9812 +2.2014/100.637+/93.76617 =39.9812 +
213.807.

From Ex. 11.69, the fitted model is § = 35.5625+1.8119x —.1351x”. For the year
2004, x = 9 and the predicted sales is § = 35.5625 + 1.8119(9) —.135(9%) = 40.9346.

With we have a’=[1 9 81]andso a'(X'X) 'a=1.94643. The 98% PI for Lexus sales
in 2004 is then
40.9346 £ 3.365(5.808)v1+1.94643 = 40.9346 + 33.5475.

For the given levels, § =21.9375, a’(XX)'a=.3135, and s> = 8.98. The 90% PI

based on 11 degrees of freedom is 21.9375 i1.796\/8.98(1 +.3135) =21.9375 £6.17
or (15.77, 28.11).

Following Ex. 11.31,S,y= 3748 and SSE= S —,S, = 3748 - (.004215)(88.8) =
.000508. Therefore, the F—test is given by F = E™-0008)/1 — 5157 57 with 1

.000508 /7
numerator and 7 denominator degrees of freedom. Clearly, p—value <.005 so reject Hy.

From Definition 7.2, let Z ~ Nor(0, 1) and W ~ %2, and let Z and W be independent.

Then, T = has the t—distribution with v degrees of freedom. But, since Z> ~ xf ,

z
NIE
by Definition 7.3, F = T* has a F—distribution with 1 numerator and v denominator
degrees of freedom. Now, specific to this problem, note that if k =1, SSEg = Syy. So,
the reduced model F—test simplifies to

Syy _(Syy _Blsxy) _ 612 T2
SSE. /(n—-2) s? /S,y

a. To test Hy: B1 = P2 = B3 = 0 vs. Hg: at least one B; # 0, the F—statistic is
F (10965.46 -1107.01)/3 _ 32,653,
1107.01/11
with 3 numerator and 11 denominator degrees of freedom. From Table 7, we see that
p—value < .005, so there is evidence that at least one predictor variable contributes.

_ 1107.01

10965.46
variation in percent yield (Y) is explained by the model.

b. The coefficient of determination is R* =1 =.899, 50 89.9% of the

a. To test Hy: B2 = B3 = 0 vs. Ha: at least one B; # 0, the reduced model F—test is
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11.88

= (5470.07-1107.01)/2

1107.01/11
with 2 numerator and 11 denominator degrees of freedom. Since F s = 3.98, we can
reject Ho.

=21.677,

(SSE; -1107.01)/2
1107.01/11

b. We must find the value of SSER such that = 3.98. The solution

is SSEr = 1908.08

a. The result follows from
n—(k+1)( R? n—(k+1) 1-SSE/S,, B (S,, —SSE)k B
k (I—RZJ_ k [ SSE/S,, J_SSE/[n—(kH)]_
b. The form is F = T*.

Here,n=15, k =4.

a. Using the result from Ex. 11.84, F = 10 942
1-.942

4
10 denominator degrees of freedom. From Table 7, it is clear that p—value <.005,
so we can safely conclude that at least one of the variables contributes to predicting
the selling price.

) = 40.603 with 4 numerator and

b. Since R* =1-SSE/ S,,» SSE=16382.2(1 —.942) = 950.1676.

To test Ho: B2 = B3 = P4 = 0 vs. Hg: at least one B; # 0, the reduced—model F—test is
F_ (1553-950.16)/3 _ 2115,
950.1676/10
with 3 numerator and 10 denominator degrees of freedom. Since Fos =3.71, we fail to
reject Hy and conclude that these variables should be dropped from the model.

a. The F—statistic, using the result in Ex. 11.84,1s F = %(—?) = 4.5 with 4 numerator

and 2 denominator degrees of freedom. Since F; =9.24, we fail to reject Ho.

b. Since k is large with respect to n, this makes the computed F—statistic small.

c. The F—statistic, using the result in Ex. 11.84,is F = 4—;(5) =2.353 with 3

numerator and 40 denominator degrees of freedom. Since F; =2.23, we can reject Hy.
d. Since k is small with respect to n, this makes the computed F—statistic large.
a. False; there are 15 degrees of freedom for SSE.

b. False; the fit (R*) cannot improve when independent variables are removed.
c. True
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d. False; not necessarily, since the degrees of freedom associated with each SSE is
different.

e. True.

f. False; Model I1I is not a reduction of Model I (note the X;X; term).

a. True.

b. False; not necessarily, since Model III is not a reduction of Model I (note the X;X,
term).

c. False; for the same reason in part (b).

Refer to Ex. 11.69 and 11.72.
a. We have that SSEg =217.7112 and SSEc = 168.636. For Hy: B, =0 vs. Ha: B2 #0,

the reduced model F—test is F = 217.7112 ~168.636 = 1.455 with 1 numerator and

168.636/5
5 denominator degrees of freedom. With F o5 = 6.61, we fail to reject Hy.

b. Referring to the R output given in Ex. 11.72, the F—statistic is F = 8.904 and the p—
value for the test is .0225. This leads to a rejection at the o = .05 level.

The hypothesis of interest is Hy: B; = B4 = 0 vs. Ha: at least one Bi # 0, 1= 1, 4. From
Ex. 11.74, we have SSEc = 98.8125. To find SSERg, we fit the linear regression model
with just X, and X3 so that

338 /16 0 0
XY =|-19.4 (XX)"'=| 0 1/16 0
~26 0 0 1/16

and so SSEr = 7446.52 — 7164.195 = 282.325. The reduced—model F—test is
= (282.325-98.8125)/2 — 1021,
98.8125/11
with 2 numerator and 11 denominator degrees of freedom. Thus, since F s =3.98, we
can reject Hy can conclude that either T; or T, (or both) affect the yield.

To test Ho: B3 = B4 = Bs = 0 vs. Ha: at least one B # 0, the reduced—model F—test is
Fo (465.134-152.177)/3 _ 12.34,
152.177/18
with 3 numerator and 18 denominator degrees of freedom. Since F o5 = 5.92, we have
that p—value < .005.

Refer to Example. 11.19. For the reduced model, 5% =326.623/8 = 40.83. Then,
/11 0 0

(XX)"'={ 0 2/17 0 |[,a’=[1 1 —I].
0 0 2/17
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So, y=a' =93.73 +4 —7.35=90.38 and a'(X'’X)'a=.3262. The 95% CI for E(Y)
is 90.38 +2.3064/40.83(.3262) = 90.38 + 8.42 or (81.96, 98.80).

From Example 11.19, tests of Ho: Bi = 0 vs. Ho: Bi # 0 for i = 3, 4, 5, are based on the

. B;
statistic t, = —2

sy/C;
The three computed test statistics are |t3] = .58, |ts| = 3.05, |ts| = 2.53. Therefore, none of
the three parameters are significantly different from O.

with 5 degrees of freedom and Hj is rejected if [t > to; = 4.032.

a. The summary statistics are: X =-268.28, ¥ =.6826, Syy =—15.728, Syx =297.716,
and Syy =.9732. Thus, ¥ =-13.54 - 0.053x.

b. First, SSE = .9732 — (—.053)(~15.728) = .14225, so s> = .14225/8 = .01778. The test
statistic is t = =% =-6.86 and H is rejected at the a = .01 level.

.01778
297.716

c. With x =-273, § =-13.54 - .053(-273) = .929. The 95% PI is
929+2.306+.01778 \/1 b OISR 979+ 33,

Here, R will be used to fit the model:

> x <- c(-499, .558, .604, .441, .550, .528, .418, .480, .406, .467)
>y <-c(11.14,12.74,13.13,11.51,12.38,12.60,11.13,11.70,11.02,11.41)
> summary(Im(y~x))

Call:
Im(formula = y ~ x)
Residuals:

Min 10 Median 3Q Max
-0.77823 -0.07102 0.08181 0.16435 0.36771
Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) 6.5143 0.8528 7.639 6.08e-05 ***
X 10.8294 1.7093 6.336 0.000224 ***

Signif. codes: 0O "**** 0.001 **** 0.01 **" 0.05 *." 0.1 * " 1

Residual standard error: 0.3321 on 8 degrees of freedom
Multiple R-Squared: 0.8338, Adjusted R-squared: 0.813
F-statistic: 40.14 on 1 and 8 DF, p-value: 0.0002241

a. The fitted model is § = 6.5143 + 10.8294x.

b. The test Hy: B; =0 vs. Ha: B1 # 0 has a p—value of .000224, so Hy is rejected.
c. Itis found that s=.3321 and Syx=.0378. So, withx=.59, ¥ =6.5143 +

10.8294(.59) = 12.902. The 90% CI for E(Y) is
12.902 +1.860(.3321)y/ % + L2450 = 12 902 + .36,

.0378
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a. Using the matrix notation,

1 -3 5 -1 1

1 -2 0 1 0
10 /7 0 0 0

1 -1 -3 1 0
|14 1o 128 0o o0

X=[1 0 -4 0 Y=[1],XY=| |, (XX)'=

10 0 0 1/8 0

11 -3 -1 2
-3 0 0 0 1/6

1 2 0 -1 3

13 5 1 3

So, the fitted model is found to be § = 1.4825 + .5, +.1190%, — .5%;.

b. The predicted value is § = 1.4825+.5—.357+.5=2.0715. The observed value at

these levels was y = 2. The predicted value was based on a model fit (using all of the
data) and the latter is an observed response.

¢. First, note that SSE =24 — 23.9757 = .0243 so s?=.0243/3 = .008. The test statistic

ﬁz -5

is t=- == Tomae —13.7 which leads to a rejection of the null hypothesis.

d.Here,a’=[1 1 -3 —1]andso a'(X'X) 'a=.45238. So, the 95% CI for E(Y) is
2.0715+3.182+/.008+/.45238 =2.0715+.19 or (1.88, 2.26).

e. The prediction interval is 2.0715 + 3.182+/.008+/1 +.45238 =2.0715 + .34 or (1.73,
2.41).

Symmetric spacing about the origin creates a diagonal X"X matrix which is very easy to
invert.

2
Since V(B,) = o , this will be minimized when S, = Z:in:l(xi —X)? is as large as
possible. This occurs when the X; are as far away from X as possible. If -9 <x <9,
chose /2 atx=-9 and n/2 at x=9.

Based on the minimization strategy in Ex. 11.99, the values of x are: -9, -9, -9, -9, -9,
9,9,9,9,9. Thus S,, = z:(xi -X)’ = 2.121 x; =810. If equal spacing is employed,

10,
X
i=1 !

the values of X are: -9, -7, -5,-3,-1,1,3,5,7,9. Thus, S, = Z:(Xi -X)’ =
=330. The relative efficiency is the ratio of the variances, or 330/810 = 11/27.

Here, R will be used to fit the model:

> x1 <- ¢(0,0,0,0,0,1,1,1,1,1)

> x2 <- ¢(-2,-1,0,1,2,-2,-1,0,1,2)

>y <- ¢(8,9,9.1,10.2,10.4,10,10.3,12.2,12.6,13.9)
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> summary (Im(y~x1+x2+1 (x1*x2)))
Call:
Im(formula =y ~ x1 + x2 + I(X1 * x2))

Residuals:

Min 1Q Median 30 Max
-0.4900 -0.1925 -0.0300 0.2500 0.4000
Coefficients:

Estimate Std. Error t value Pr(c|t])

(Intercept) 9.3400 0.1561 59.834 1.46e-09 ***
x1 2.4600 0.2208 11.144 3.11e-05 ***
X2 0.6000 0.1104 5.436 0.00161 **
I(x1 * x2) 0.4100 0.1561 2.627 0.03924 *

Signif. codes: O "**** 0.001 ***" 0.01 "** 0.05 "." 0.1 ° " 1
Residual standard error: 0.349 on 6 degrees of freedom
Multiple R-Squared: 0.9754, Adjusted R-squared: 0.963
F-statistic: 79.15 on 3 and 6 DF, p-value: 3.244e-05

a. The fitted model is § = 9.34 + 2.46X; + .6X; + .41XX,.
b. For bacteria type A, X; =0so § =9.34 + .6x; (dotted line)

A

For bacteria type B, X; =1 so § =11.80 + 1.01 X, (solid line)

T T T T T
-2 -1 0 1 2

c. ForbacteriaA,x; =0,%,=0,s0 ¥ =9.34. ForbacteriaB,x;=1,x,=0,s0 § =
11.80. The observed growths were 9.1 and 12.2, respectively.

d. The rates are different if the parameter B3 is nonzero. So, Hy: B3 =0 vs. Ha: B3 #0
has a p—value =.03924 (R output above) and Hy is rejected.

e. Withx;=1,X=1,s0 § =12.81. Withs=.349 and a'(X'X)'a =.3, the 90% CI
is 12.81 +.37.

f. The 90% Pl is 12.81 +.78.



Chapter 11: Linear Models and Estimation by Least Squares

www.elsolucionario.net

255

11.102

11.103

11.104

11.105

Instructor’s Solutions Manual

(795.23-783.9)/2

783.9/195
195 denominator degrees of freedom. Since F s = 3.00, we fail to reject Hy: salary is
not dependent on gender.

The reduced model F statistic is F = = 1.41 with 2 numerator and

Define 1 as a column vector of n 1’s. Then y=-11'Y . We must solve for the vector x

such that y = x'/;’ . Using the matrix definition of ﬁ , we have

V=x'(XX)'XY=11Y
X(XX)' XYY =117V’
which implies
X(XX)'X' =11
X(XX)'XX=1rx
so that
x'=1iI'X

Thatis, x'=[1 X, X, ... X ].

Here, we will use the coding X, = %& and x,

1200 Then, the levels are x; =—1, 1

and X, =-1, 0, 1.
[21] 1 -1 -1 1]
23 1 -1 0 0 143 5 0 0 -5
26 1 -1 1 1 . 0 .1667 0 0
a. Y= X = XY = (XX)" =
22 1 1 -1 1 11 0 0 25 0
23 1 1 0 0 97 -5 0 0 .75
128 11 -1 1]

So, the fitted model is § =23 + .5x; +2.75x, +1. 25X

b. The hypothesis of interest is Ho: B3 = 0 vs. Ha: B3 # 0 and the test statistic is (verify
that SSE = 1 so that s* = .5) |t = L2 =2.040 with 2 degrees of freedom. Since tys =

NEEE)
4.303, we fail to reject Hy.

c. To test Ho: B2 = B3 = 0 vs. Ha: at least one B # 0, i = 2, 3, the reduced model must be
fitted. It can be verified that SSEr = 33.33 so that the reduced model F—test is F =
32.33 with 2 numerator and 2 denominator degrees of freedom. It is easily seen that Hy
should be rejected; temperature does affect yield.

yy
4SXXSW V XX V XX

aBl_
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11.106

11.107

11.108

b. The conditional distribution of Yj, given X; = X;, is (see Chapter 5) normal with mean
Hy, +p-(X —p,) and variance o} (1—-p*). Redefine i = p<-, Bo=p, —PB,u,. So,
if p=0, 1 =0. So, using the usual t-statistic to test ; = 0, we have

T = ﬁ1 _ ﬁl :El\l(n_z)sxx )

c. By part a, ﬁl = rwlz—w and the statistic has the form as shown. Note that the

distribution only depends on n — 2 and not the particular value X;. So, the distribution is
the same unconditionally.

The summary statistics are Syx = 66.54, Sy = 71.12, and Syy=93.979. Thus, r = .8994.
To test Hp: p=0vs. Ha: p #0, |t| = 5.04 with 6 degrees of freedom. From Table 7, we

see that p—value <2(.005) = .01 so we can reject the null hypothesis that the correlation
is 0.

The summary statistics are Syx = 153.875, Syy = 12.8, and Syy=1.34.

a. Thus, r =.89.

b. To test Hy: p=0 vs. Ha: p #0, |t| = 4.78 with 6 degrees of freedom. From Table 7,
we see that p—value <2(.005) = .01 so we can reject the null hypothesis that the
correlation is 0.

a.-c. Answers vary.
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12.2

12.3

12.4

12,5

12.6

12.7

(See Example 12.1) Let n; = (=% )n = (:2,)90 = 33.75 or 34 and n, = 90 — 34 = 56,

01+52

(See Ex. 12.1). If ny =34 and n, = 56, then
Oyy, =\ +2=+.7111
In order to achieve this same bound with equal sample sizes, we must have
Vo2 =4[T7111
The solution is n =47.8 or 48. Thus, it is necessary to have n; = n, = 48 so that the
same amount of information is implied.

The length of a 95% ClI is twice the margin of error:

2(1.96),[2+ 2,

and this is required to be equal to two. In Ex. 12.1, we found n; = (3/8)n and n; =
(5/8)n, so substituting these values into the above and equating it to two, the solution is
found to be n = 245.9. Thus, n; =93 and n, = 154.

(Similar to Ex. 12.3) Here, the equation to solve is
2(1.96) n—91+§—f =2.
The solution is n; = 130.6 or 131, and the total sample size required is 131 + 131 = 262.

Refer to Section 12.2. The variance of the slope estimate is minimized (maximum
information) when Sy is as large as possible. This occurs when the data are as far away
from X as possible. So, with n = 6, three rats should receive x = 2 units and three rats
should receive x = 5 units.

When o is known, a 95% CI for B is given by
(e}

B1 iZq/zT-

XX

Under the two methods, we calculate that S,, = 13.5 for Method 1 and S,y = 6.3 for
Method 2. Thus, Method 2 will produce the longer interval. By computing the ratio of

the margins of error for the two methods (Method 2 to Method 1), we obtain /32 =
1.464; thus Method 2 produces an interval that is 1.464 times as large as Method 1.

Under Method 2, suppose we take n measurements at each of the six dose levels. It is
not difficult to show that now Sy = 6.3n. So, in order for the intervals to be equivalent,
we must have that 6.3n = 13.5, and so n = 2.14. So, roughly twice as many observations
are required.

Although it was assumed that the response variable Y is truly linear over the range of x,

the experimenter has no way to verify this using Method 2. By assigning a few points
at x = 3.5, the experimenter could check for curvature in the response function.

257
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12.8

12.9

12.10

12.11

12.12

12.13

12.14

Checking for true linearity and constant error variance cannot be performed if the data
points are spread out as far as possible.

a. Each half of the iron ore sample should be reasonably similar, and assuming the two
methods are similar, the data pairs should be positively correlated.

b. Either analysis compares means. However, the paired analysis requires fewer ore
samples and reduces the sample—to—sample variability.

The sample statistics are: d =-.0217, s> = .0008967.

| -.0217]

=1.773 with 5

a. Totest Ho: up =0 vs. Ha: pp # 0, the test statistic is |t| =

.0008967/6
degrees of freedom. Since to5 = 2.571, Hp is not rejected.
b. From Table 5, .10 < p—value < .20.

The 95% Cl is —.0217 £ 2.571,/-0%%7 = — 0217 £ .0314.

Recall that Var(D) = %(Gf +05+ 2p0102) given in this section.

a. This occurs when p > 0.

. This occurs when p = 0.

This occurs when p < 0.

. If the samples are negatively correlated, a matched—pairs experiment should not be
performed. Otherwise, if it is possible, the matched—pairs experiment will have an
associated variance that is equal or less than the variance associated with the
independent samples experiment.

b
C.
d

a. There are 2n — 2 degrees of freedom for error.
b. There are n — 1 degrees of freedom for error.
C.

n | Independent samples | Matched—pairs

5 df. = 8, t_025 =2.306 df.= 4, t_025 =2.776
10 | d.f. = 18, t,025 =2.101|d.f. = 9, t,025 =2.262
30| df. = 58, Loxs = 1.96 df.= 29, Loxs = 2.045

d. Since more observations are required for the independent samples design, this
increases the degrees of freedom for error and thus shrinks the critical values used in
confidence intervals and hypothesis tests.

A matched—pairs experiment is preferred since there could exist sample—to—sample
variability when using independent samples (one person could be more prone to plaque
buildup than another).

The sample statistics are: d

T — 333
test statistic Is t = "[5.466/6

so Hy is not rejected.

=-.333, s} =5.466. To test Ho: up =0 vs. Ha: pp < 0, the
—.35 with 5 degrees of freedom. From Table 5, p—value > .1
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a. The sample statistics are: d = 1.5, s3 = 2.571. To test Ho: up = 0 vs. Ha: up # 0, the

L5 _ = 265 with 7 degrees of freedom. Since toss = 2.365, Ho is

test statistic is |t| = NG

rejected.

b. Notice that each technician’s score is similar under both design A and B, but the
technician’s scores are not similar in general (some are high and some are low). Thus,
pairing is important to screen out the variability among technicians.

c. We assumed that the population of differences follows a normal distribution, and that
the sample used in the analysis was randomly selected.

The sample statistics are: d = —3.88, s3 = 8.427.

a. Totest Ho: up =0 vs. Ha: up <0, the test statistic ist = \/% =-5.176 with 14

degrees of freedom. From Table 5, it is seen that p—value < .005, so Hy is rejected
when o = .01.

b. A95% Clis —3.88+2.145/8.427/15 =-3.88 + 1.608.

c. Using the Initial Reading data, ¥ = 36.926 and s* = 40.889. A 95% CI for the mean

muck depth is 36.926 + 2.1451/40.889/15 =36.926 + 3.541.
d. Using the Later Reading data, ¥ = 33.046 and s* = 35.517. A 95% ClI for the mean

much depth is 33.046 + 2.1454/35.517/15 =33.046 + 3.301.

e. For parts a and b, we assumed that the population of differences follows a normal
distribution, and that the sample used in the analysis was randomly selected. For
parts ¢ and d, we assumed that the individual samples were randomly selected from
two normal populations.

a. E(Yij) =u +EU;)+ E(Sij) =L,
b. Each Yy; involves the sum of a uniform and a normal random variable, and this
convolution does not result in a normal random variable.

c. Cov(Yy;,Y;;)=Cov(y, +U; +&,u, +U; +¢,;) = Cov(u,,p,) + Cov(U;,U;) +
Cov(g,j,&,;) =0+ V(U +0=1/3.
d. Observe that D; =Y,; —Y,; =, —u, +&;; —¢&,;. Since the random errors are

independent and follow a normal distribution, D; is a normal random variable. Further,
forj=j’, Cov(D;,D;)=0 since the two random variables are comprised of constants

and independent normal variables. Thus, D; and D, are independent (recall that if two

normal random variables are uncorrelated, they are also independent — but this is not
true in general).

e. Provided that the distribution of U; has a mean of zero and finite variance, the result
will hold.

Use Table 12 and see Section 12.4 of the text.

Use Table 12 and see Section 12.4 of the text.
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12.20

12.21

12.22

12.23

12.24

12.25

12.26

12.27

12.28

12.29

12.30

a. There are six treatments. One example would be the first catalyst and the first
temperature setting.

b. After assigning the n experimental units to the treatments, the experimental units are
numbered from 1 to n. Then, a random number table is used to select numbers until all
experimental units have been selected.

Randomization avoids the possibility of bias introduced by a nonrandom selection of
sample elements. Also, it provides a probabilistic basis for the selection of a sample.

Factors are independent experimental variables that the experimenter can control.
A treatment is a specific combination of factor levels used in an experiment.

Yes. Suppose that a plant biologist is comparing three soil types used for planting,
where the response is the yield of a crop planted in the different soil types. Then, “soil
type” is a factor variable. But, if the biologist is comparing the yields of different
greenhouses, but each greenhouse used different soil types, then “soil type” is a
nuisance variable.

Increases accuracy of the experiment: 1) selection of treatments, 2) choice of number of
experimental units assigned to each treatment.

Decreases the impact of extraneous sources of variability: randomization; assigning
treatments to experimental units.

There is a possibility of significant rat—to—rat variation. By applying all four dosages to
tissue samples extracted from the same rat, the experimental error is reduced. This
design is an example of a randomized block design.

In the Latin square design, each treatment appears in each row and each column exactly
once. So, the design is:

B|/A|C
C|B|A
AIC|B

A CI could be constructed for the specific population parameter, and the width of the ClI
gives the quantity of information.

A random sample of size n is a sample that was randomly selected from all possible
(unique) samples of size n (constructed of observations from the population of interest)
and each sample had an equal chance of being selected.

From Section 12.5, the choice of factor levels and the allocation of the experimental
units to the treatments, as well as the total number of experimental units being used,
affect the total quantity of information. Randomization and blocking can control these
factors.
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12.31  Given the model proposed in this exercise, we have the following:
a. E(Yij) =w; +E(P)+ E(Sij)zui +0+0=p,.
b. Obviously, E(Y,) = p,. Also, V(¥,) =2V (Y,) =1V (P)+V(e,)|= 1|02 + 7],
since P; and ¢;; are independent for all i, j.
c. Frompartb, E(D)=E(Y,)-E(Y,)=pn, —u,. Now, to find V (D), note that

D—nZHDj—Hl My +4 i1 81 +Zj:182j'

Thus, since the ;; are independent, V (D) = %{Zjﬂv (e1;) +ZLV (e, )J = 26%/n.

n
Further, since D is a linear combination of normal random variables, it is also
normally distributed.

5‘(“1_“2)
N2c%/n

addition, since Dy, ..., D, are independent normal random variables with mean p; — p;
and variance 267, the quantity

12.32  From Exercise 12.31, clearly has a standard normal distribution. In

_(n-1sf _ 2,0 -DY’

W
262 252

is chi—square with v = n — 1 degrees of freedom. Therefore, by Definition 7.2 and
under Ho: ug — n2 =0,
Z D
Wiv s, ln

has a t—distribution with n — 1 degrees of freedom.

12.33  Using similar methods as in Ex. 12.31, we find that for this model,
V(D) =23 V(P +V (R +V () +V ()] = Hao? + 267> 1202,

Thus, the variance is larger with the completely randomized design, since the unwanted
variation due to pairing is not eliminated.

12.34  The sample statistics are: d = —.062727, s =.012862.

a. We expect the observations to be positively correlated since (assuming the people
are honest) jobs that are estimated to take a long time actually take a long time when
processed. Similar for jobs that are estimated to take a small amount of processor
time.

b. To test Ho: up = 0 vs. Ha: up < 0, the test statistic is t = Jﬁ% = -1.834 with 10

degrees of freedom. Since —t ;9 = —1.362, Hy is rejected: there is evidence that the
customers tend to underestimate the processor time.

c. From Table 5, we have that .025 < p—value < .05.

d. A90% ClI for p, =p, —p,,is —.062727 £1.812+.012862 /11 = -.063 + .062 or

(-.125, —.001).
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12.35

12.36

12.37

The sample statistics are: d = -1.58, s3 = .667.

a.

_ |158
~ 6675
degrees of freedom. From Table 5, we can see that .01 < p—value <.025, so Hy
would be rejected for any a > .025.

A 95% Cl is given by —1.58+2.776+/.667/5 =-1.58 + 1.014 or (—2.594, —.566).
We will use the estimate of the variance of paired differences. Also, since the
required sample will (probably) be large, we will use the critical value from the
standard normal distribution. Our requirement is then:

IeF [.667
2=1 -2 ~1.96,|—.
0257 n

The solution is n = 64.059, or 65 observations (pairs) are necessary.

=4.326 with 4

To test Ho: up = 0 vs. Ha: up # 0, the test statistic is |t|

The sample statistics are: d = 106.9, s3 = 1364.989.

a.

Each subject is presented each sign in random order. If the subject’s reaction time is
(in general) high, both responses should be high. If the subject’s reaction time is (in
general) low. both responses should be low. Because of the subject—to—subject
variability, the matched pairs design can eliminate this extraneous source of
variation.

To test Ho: up =0 vs. Ha: up # 0, the test statistic is |t| = % =9.15with 9

degrees of freedom. Since t.025 = 2.262, H is rejected.

From Table 5, we see that p—value < 2(.005) = .01.

The 95% Cl is given by 106.9 + 2.262+/1364.989/10 = 106.9 + 26.428 or (80.472,
133.328).

There are nk; points at x = -1, nk; at x = 0, and nks points at x = 1. The design matrix X
can be expressed as

1 -1 1]
1 -1 1
-1 1
0
1 0 0 n n(k; —k,) n(k, +k;) 1 b a
X=|" . . [ithusXX=|n(k,~k) n(k+k;) nk,~k)|=nlb a b|=nA,
o n(k, +k;) n(ks—k) nk,+k;)| |a b a
1 1 1

Wheré a=k;+ 123 and b = ks — k;.
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Now, the goal is to minimize V(ﬁz) = 67c,, , where cy, is the (3, 3) element of (X'X)™.
To calculate (X’X)™, note that it can be expressed as

a’ —b? 0 b*-a°
a—a’ ab-b [, and (the student should verify) the
ab-b a-b?
determinant of A simplifies to det(A) = 4kjkoks. Hence,

~ _ 2 2 _ _ 2

V(@,) = o a-b _o ki +K; — (ks = k) _
4nk,K,k, n 4k, K,k

We must minimize

— kl t ka _(ka — k1)2 kl + ks _[(ks + k1)2 _4k1k3] _ (kl t ka)[l_ kl — ka]_ 4k1k3

L1 0
ndet(A)| , .

Q =

4k k,k, 4k k, Kk, 4k Kk, Kk, 4Kk, Kk,
_kitks 1 _kitks 1
©o4kk, k, 4kk, 11—k, —k,
. k, +Kkj, 1 . : L
So, with Q = - , We can differentiate this with respect to k; and k3

4k,k, 1-k, -k,
and set these equal to zero. The two equations are:
4k? =(1-k, —ki)® ()
4k§ :(1_k1_k3)2 '

Since ki, ko, and ks are all positive, k; = ks by symmetry of the above equations and
therefore by (*), 4k’ = (1-2k,)’ so that k; = k3 =.25. Thus, k, = .50.
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13.3
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The summary statistics are: Y, = 1.875, s/ =.6964286, y, =2.625, s; =.8392857, and

n; =n, = 8. The desired test is: Hop: i = wo vs. Ha: Wy # o, where py, p, represent the

mean reaction times for Stimulus 1 and 2 respectively.

a. SST=4(1.875- 2.625)2 =2.25, SSE = 7(.696428) + 7(.8392857) = 10.75. Thus,
MST =2.25/1 =2.25 and MSE = 10.75/14 = .7679. The test statistic F = 2.25/.7679
= 2.93 with 1 numerator and 14 denominator degrees of freedom. Since F s = 4.60,
we fail to reject Hy: the stimuli are not significantly different.

b. Using the Applet, p—value = P(F >2.93) = .109.

Note that Sf) = MSE =.7679. So, the two—sample t—test statistic is [t|

_ |1.875-2.625] _

.7679(Ej
8

1.712 with 14 degrees of freedom. Since t o5 =2.145, we fail to reject Hy. The two
tests are equivalent, and since F = T, note that 2.93 = (1.712)* (roundoff error).

d. We assumed that the two random samples were selected independently from normal
populations with equal variances.

Refer to Ex. 10.77. The summary statistics are: J, =446, s} =42, §, =534, s; =45,

andn; =ny=15.

a. SST =7.5(446 — 534)> = 58,080, SSE = 14(42) + 14(45) = 1218. So, MST = 58,080
and MSE = 1218/28 = 1894.5. The test statistic F = 58,080/1894.5 = 30.64 with 1
numerator and 28 denominator degrees of freedom. Clearly, p—value <.005.

b. Using the Applet, p—value = P(F > 30.64) = .00001.

c. InEx. 10.77, t=-5.54. Observe that (—5.54)* = 30.64 (roundoff error).

d. We assumed that the two random samples were selected independently from normal
populations with equal variances.

See Section 13.3 of the text.

For the four groups of students, the sample variances are: s/ = 66.6667, s> = 50.6192,
532 =91.7667, Sf =33.5833 withn;=6,n,=7,n;3=6,ny=4. Then, SSE = 5(66.6667)

+6(50.6192) + 5(91.7667) + 3(33.5833) = 1196.6321, which is identical to the prior
result.

Since W has a chi—square distribution with r degrees of freedom, the mgf is given by
m, (1) =EE")=(1-2t)"">.
Now, W=U +V, where U and V are independent random variables and V is chi—square
with s degrees of freedom. So,
m, (1) =E@E")=E@E"“")=E(")E(Y)=EEY)1-2t)""? =(1-2t)"".

(1-2t)""? ez - .
=—"——=(1-2t) . Since this is the mgf for a chi—
(1 _ Zt) s/2

square random variable with r — s degrees of freedom, where r > s, by the Uniqueness
Property for mgfs U has this distribution.

Therefore, m, (t) = E(e")

264
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a. Recall that by Theorem 7.3, (n, —1)S;’ /G is chi-square with nj— 1 degrees of
freedom. Since the samples are independent, by Ex. 6.59, SSE/c* = z:ll(ni -1S? /o’

is chi—square with n — k degrees of freedom.

b. If Hy is true, all of the observations are identically distributed since it was already
assumed that the samples were drawn independently from normal populations with
common variance. Thus, under Hy, we can combine all of the samples to form an

estimator for the common mean, Y , and an estimator for the common variance, given by
TSS/(n—1). By Theorem 7.3, TSS/c” is chi-square with n — 1 degrees of freedom.

c. The result follows from Ex. 13.5: let W = TSS/o” where r =n — 1 and let V = SSE/c?
where s =n — k. Now, SSE/c” is distributed as chi-square with n — k degrees of freedom
and TSS/o” is distributed as chi—square under Hy. Thus, U = SST/o? is chi—square under
Ho withn— 1 —(n—k) =k — 1 degrees of freedom.

d. Since SSE and TSS are independent, by Definition 7.3
- _ SST/(o*(k=1) _ MST
- SSE/(c*(n—k)) MSE
has an F—distribution with k — 1 numerator and n — k denominator degrees of freedom.

We will use R to solve this problem:

waste <- c(1.65, 1.72, 1.5, 1.37, 1.6, 1.7, 1.85, 1.46, 2.05, 1.8,
-4, 1.75, 1.38, 1.65, 1.55, 2.1, 1.95, 1.65, 1.88, 2)
plant <- c(rep(“A",5), rep(*'B",5), rep("'C",5), rep(’'D",5))
plant <- factor(plant) # change plant to a factor variable
summary(aov(waste~plant))
Df Sum Sq Mean Sq F value Pr(cF)
plant 3 0.46489 0.15496 5.2002 0.01068 *
Residuals 16 0.47680 0.02980

Signif. codes: O "**** 0.001 **** 0.01 **" 0.05 "." 0.1 ° " 1

VVVEYV

a. The F statistic is given by F = MST/MSE = .15496/.0298 = 5.2002 (given in the
ANOVA table above) with 3 numerator and 16 denominator degrees of freedom.
Since F o5 = 3.24, we can reject Hy: 1 = (o = p3 = pg and conclude that at least one of
the plant means are different.

b. The p—value is given in the ANOVA table: p—value = .01068.

Similar to Ex. 13.7, R will be used to solve the problem:

> salary <- c(49.3, 49.9, 48.5, 68.5, 54.0, 81.8, 71.2, 62.9, 69.0,
69.0, 66.9, 57.3, 57.7, 46.2, 52.2)
> type <- factor(c(rep('public™,5), rep(“private”,5), rep(‘church,5)))

a. This is a completely randomized, one—way layout (this is sampled data, not a
designed experiment).
b. To test Ho: i = o = p3, the ANOVA table is given below (using R):
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> summary(aov(salary~type))

Df Sum Sgq Mean Sq F value Pr(cF)
type 2 834.98 417.49 7.1234 0.009133 **
Residuals 12 703.29 58.61

Signif. codes: 0O "**** 0.001 **** 0.01 **" 0.05 *." 0.1 * " 1

From the output, F = MST/MSE = 7.1234 with 3 numerator and 12 denominator degrees
of freedom. From Table 7, .005 < p—value < .01.

c. From the output, p-value = .009133.

13.9 The test to be conducted is Ho: p; = pp = p3 = pa, where | is the mean strength for the it
mix of concrete, i = 1, 2, 3, 4. The alternative hypothesis at least one of the equalities
does not hold.

a. The summary statistics are: TSS =.035, SST =.015, and so SSE =.035 —-.015 = .020.
The mean squares are MST = .015/3 =.005 and MSE = .020/8 = .0025, so the F
statistic is given by F =.005/.0025 = 2.00, with 3 numerator and 8 denominator
degrees of freedom. Since F s =4.07, we fail to reject Hy: there is not enough
evidence to reject the claim that the concrete mixes have equal mean strengths.

b. Using the Applet, p—value = P(F >2) =.19266. The ANOVA table is below.

Source df SS MS F p-value
Treatments 3 .015 .005 2.00 .19266
Error 8 .020 .0025

Total 11 .035

13.10 The test to be conducted is Ho: p; = o = p3, where 1 is the mean score where the i™
method was applied, i = 1, 2, 3. The alternative hypothesis at least one of the equalities
does not hold
a. The summary statistics are: TSS = 1140.5455, SST = 641.8788, and so SSE =

1140.5455 — 641.8788 = 498.6667. The mean squares are MST = 641.8788/2 =
320.939 and MSE = 498.6667/8 = 62.333, so the F statistic is given by F =
320.939/62.333 = 5.148, with 2 numerator and 8§ denominator degrees of freedom.
By Table 7, .025 < p—value < .05.

b. Using the Applet, p—value = P(F > 5.148) = .03655. The ANOVA table is below.

Source d.f SS MS F  p-value
Treatments 2  641.8788 320.939 5.148 .03655
Error 8  498.6667 62.333

Total 10 1140.5455

c. With a=.05, we would reject Hy: at least one of the methods has a different mean
score.
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13.11 Since the three sample sizes are equal, ¥ =1(y, +y, + ;) = 3(93+1.21+.92)=1.02.
Thus, SST = n, Z;(Vi ~-y)’ = 142:;(7i ~1.02)* =.7588. Now, recall that the

“standard error of the mean” is given by S/ Jn, so SSE can be found by

SSE = 13[14(.04)> + 14(.03)> + 14(.04)*] = .7462.
Thus, the mean squares are MST = .7588/2 = .3794 and MSE =.7462/39 = .019133, so
that the F statistic is F =.3794/.019133 = 19.83 with 2 numerator and 39 denominator
degrees of freedom. From Table 7, it is seen that p—value < .005, so at the .05
significance level we reject the null hypothesis that the mean bone densities are equal.

13.12 The test to be conducted is Ho: p; = pp = ps, where L is the mean percentage of Carbon
14 where the i™ concentration of acetonitrile was applied, i = 1, 2, 3. The alternative
hypothesis at least one of the equalities does not hold
a. The summary statistics are: TSS =235.219, SST = 174.106, and so SSE =235.219 —

174.106 = 61.113. The mean squares are MST = 174.106/2 = 87.053 and MSE =
235.219/33 = 1.852, so the F statistic is given by F = 87.053/1.852 = 47.007, with 2
numerator and 33 denominator degrees of freedom. Since F; = 5.39, we reject HO:
at least one of the mean percentages is different and p—value <.005. The ANOVA
table is below.

Source d.f SS MS F p—value
Treatments 2 174.106 87.053 47.007 <.005
Error 33 61.113  1.852

Total 35 235.219

b. We must assume that the independent measurements from low, medium, and high
concentrations of acetonitrile are normally distributed with common variance.

13.13 The grand mean is y = 2E2HRESHSO2 — 4 949 So,
SST = 45(4.59 — 4.949)% + 102(4.88 — 4.949) + 18(6.24 — 4.949)> = 36.286.
SSE = Z;(n —1)s? = 44(.70)* + 101(.64)* + 17(.90)* = 76.6996.
The F statistic is F = ML = _30886/2_ = 38 316 with 2 numerator and 162 denominator

degrees of freedom. From Table 7, p—value <.005 so we can reject the null hypothesis of
equal mean maneuver times. The ANOVA table is below.

Source d.f SS MS F p—value
Treatments 2 36.286 18.143 38.316 <.005
Error 162 76.6996 4735

Total 164 112.9856

13.14 The grand mean is y =-82:22:01 = (,0317. So,
SST = 10[(.032 — .0317)% + (.022 — .0317)> + (.041 — .0317)> = .001867.

SSE= 3" (n—1)s? =9[(.014)* + (.008)’ + (.017)*] = .004941.
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13.15

13.16

13.17

13.18

13.19

The F statistic is F = 4.94 with 2 numerator and 27 denominator degrees of freedom.
Since F s = 3.35, we can reject Hp and conclude that the mean chemical levels are
different.

We will use R to solve this problem:
> oxygen <- c(5.9, 6.1, 6.3, 6.1, 6.0, 6.3, 6.6, 6.4, 6.4, 6.5, 4.8,
4.3, 5.0, 4.7, 5.1, 6.0, 6.2, 6.1, 5.8)
> location <- factor(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4))
> summary(aov(oxygen~location))
Df Sum Sgq Mean Sq F value Pr(GF)
location 3 7.8361 2.6120 63.656 9.195e-09 ***
Residuals 15 0.6155 0.0410
Signif. codes: 0 "**** 0.001 **** 0.01 "*" 0.05 "." 0.1 " " 1
>

The null hypothesis is Ho: 1 = po = 13 = w4, where y; is the mean dissolved O, in location
i,1=1,2,3,4. Since the p—value is quite small, we can reject Hy and conclude the mean
dissolved O, levels differ.

The ANOVA table is below:
Source d.f SS MS F p-value
Treatments 3 67.475 224917 .87 > .1
Error 36 935.5 25.9861
Total 39 1002.975

With 3 numerator and 36 denominator degrees of freedom, we fail to reject with a = .05:
there is not enough evidence to conclude a difference in the four age groups.

EV) =42 B =220 (ntt) =0 =,
V(Yi,)=?ZHV(Y”)=¥ZHV(8” =nLiG

Using the results from Ex. 13.17,

E(Y_i. _Y_i'.) =M My =R+ (R T) =T - T

V(Y. -V, =V (V) +V (V) = [+ L
a. Recall that yj=p + 1 for i = ., k. If all 7i’s = 0, then all y;’s = p. Conversely, if
H=H, =... uk,wehavethat u+r1 =pu+1,=...=p+t,and 1, =1, =...=T,.
Since it was assumed that zik:] 1, =0, all ti’s = 0. Thus, the null hypotheses are

equivalent.

b. Consider pj = p + tj and py = p + . If i # pir, then p + 1y # p + 17 and thus T # T

Since Zi:l T, =0, at least one 1; # 0 (actually, there must be at least two). Conversely, let
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ti 7 0. Since zik:lti = 0, there must be at least one i’ such that 1j # ti. With pj = p + 1
and pir = 1+ 13, it must be so that p; # pi. Thus, the alternative hypotheses are equivalent.

a. First, note that §, = 75.67 and s} = 66.67. Then, with n; =6, a 95% CI is given by

75.67£2.571766.67/6 =75.67 + 8.57 or (67.10, 84.24).

b. The interval computed above is longer than the one in Example 13.3.

c. When only the first sample was used to estimate o>, there were only 5 degrees of
freedom for error. However, when all four samples were used, there were 14 degrees of
freedom for error. Since the critical value t ;s is larger in the above, the CI is wider.

a. The 95% CI would be given by

71 - 74 it.025814\,r+l+% >
where S,, = ,/W =7.366. Since t s =2.306 based on 8 degrees of freedom,
the 95% Cl is —12.08 £2.306(7.366),/+ + 4 =—12.08 + 10.96 or (-23.04, —1.12).

b. The CI computed above is longer.

C. The interval computed in Example 13.4 was based on 19 degrees of freedom, and the
critical value t g5 was smaller.

a. Based on Ex. 13.20 and 13.21, we would expect the Cls to be shorter when all of the
data in the one—way layout is used.

b. If the estimate of o> using only one sample is much smaller than the pooled estimate
(MSE) — so that the difference in degrees of freedom is offset — the CI width using just
one sample could be shorter.

From Ex. 13.7, the four sample means are (again, using R):
> tapply(waste,plant,mean)

A B C D
568 1.772 1.546 1.916

=

a. In the above, the sample mean for plant A is 1.568 and from Ex. 13.7, MSE = .0298
with 16 degrees of freedom. Thus, a 95% CI for the mean amount of polluting
effluent per gallon for plant A is

1.568 + 2.12+/.0298 /5 =1.568 + .164 or (1.404, 1.732).

There is evidence that the plant is exceeding the limit since values larger than 1.5
Ib/gal are contained in the CI.

b. A 95% CI for the difference in mean polluting effluent for plants A and D is
1.568-1.916 2.12,/.0298i%i =-348 + .231 or (579, —.117).

Since 0 is not contained in the CI, there is evidence that the means differ for the two
plants.



www.elsolucionario.net

270

Chapter 13: The Analysis of Variance

Instructor’s Solutions Manual

13.24

13.25

13.26

13.27

13.28

13.29

From Ex. 13.8, the three sample means are (again, using R):
> tapply(salary, type,mean)

church private public

56.06 70.78 54_04

Also, MSE = 58.61 based on 12 degrees of freedom. A 98% CI for the difference in
mean starting salaries for assistant professors at public and private/independent
universities 1s

54.04-70.78 = 2.6811/58.61@; =-16.74 £ 12.98 or (-29.72, -3.76).

The 95% Cl is given by .93—1.21+1.96(.1383)4/2/14 =—.28 % .102 or (—.382, —.178)

(note that the degrees of freedom for error is large, so 1.96 is used). There is evidence
that the mean densities for the two groups are different since the CI does not contain 0.

Refer to Ex. 13.9. MSE = .0025 with 8 degrees of freedom.
a. 90% CI for pa: 2.25 £ 1.86+/.0025/3 =2.25 + .05 or (2.20, 2.30).
b. 95% CI for pa — pa: 2.25 —2.166 + 2.306,/.0025(3 ) =.084 +.091 or (-.007, .175).

Refer to Ex. 13.10. MSE = 62.233 with 8 degrees of freedom.

a. 95% CI for pa: 76 £2.3064/62.333/5 =76 = 8.142 or (67.868, 84.142).

b. 95% CI for pg: 66.33 +£2.3064/62.333/3 =66.33 £ 10.51 or (55.82, 76.84).
C. 95% CI for pp — pg: 76 — 66.33 + 2.3061/62.333i§+§i =9.667 = 13.295.

Refer to Ex. 13.12. MSE = 1.852 with 33 degrees of freedom
a. 23.965+1.96~/1.852/12 =23.962 +.77.
b. 23.965-20.463 + 1.645,/1.852(5) = 3.502 + .914.

Refer to Ex. 13.13. MSE = .4735 with 162 degrees of freedom.
a. 6.24+196+.4735/18 =6.24 + .318.

b. 4.59-4.58+1.96.,/4735(L + ) =—29+ 241.

c. Probably not, since the sample was only selected from one town and driving habits
can vary from town to town.

13.30 The ANOVA table for these data is below.
Source d.f SS MS F p-value
Treatments 3 36.7497 12.2499 488 <.05
Error 24 60.2822 2.5118
Total 27 97.0319

a. Since F s =3.01 with 3 numerator and 24 denominator degrees of freedom, we reject

the hypothesis that the mean wear levels are equal for the four treatments.
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b. With y, =14.093 and Yy, = 12.429, a 99% ClI for the difference in the means is
14.093 -12.429 +2.797,/2.51 ISi%i =1.664 + 2.3695.

Cc. A 90% CI for the mean wear with treatment A is
11.986i1.7111/2.5118i%i =11.986 + 1.025 or (10.961, 13.011).

13.31 The ANOVA table for these data is below.

Source d.f SS MS F  p-—value
Treatments 3 18.1875 2.7292 1.32 > 1
Error 12 2475 2.0625

Total 15 32.9375

a. Since F o5 = 3.49 with 3 numerator and 12 denominator degrees of freedom, we fail to
reject the hypothesis that the mean amounts are equal.
b. The methods of interest are 1 and 4. So, with y, =2 and y, =4, a 95% CI for the

difference in the mean levels is

2-4+ 2.0521/2.0625i%i =-2+2.21or(-21,4.21).

13.32 Refer to Ex. 13.14. MSE =.000183 with 27 degrees of freedom. A 95% CI for the mean
residue from DDT is .041+2.052+/.000183/10 =.041 £.009 or (.032, .050).

13.33 Refer to Ex. 13.15. MSE = .041 with 15 degrees of freedom. A 95% CI for the
difference in mean O2 content for midstream and adjacent locations is

6.44-4.78 + 2.131,/.041i%i =1.66 +.273 or (1.39, 1.93).

13.34 The estimator for 8= (i, +1,) 1, is 0 =1(¥, +¥,) = ¥,. So, V(B) =4[+ )+ <.

n, ny

A 95% Cl for 0 is given by 2(Y, +¥,)— ¥, £t s \/MSE(%HI + L) Using the
supplied data, this is found to be .235 £ .255.

13.35 Refer to Ex. 13.16. MSE = 25.986 with 36 degrees of freedom.
a. A 90% CI for the difference in mean heart rate increase for the 1% and 4™ groups is

309-282+ 1.6451/25.986i%i =2.7+3.75.

b. A 90% CI for the 2™ group is
27.5+£1.6454/25.986/10 =27.5+ 2.652 or (24.85, 30.15).

13.36 See Sections 12.3 and 13.7.

1337 a g ¥ X B = X X ek B ) =g bkt b kD B, =

b. The parameter p represents the overall mean.
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13.38 We have that:
Y. :%ZLYU :%Z? (L+7 +B; +e&;)
=M+Ta+%zkz:ﬁj bz 48 “+Ti+%zt}218ii :
Thus: E(Y.)=p+r1, +%zb E(gj)=n+1, =1, s0 Y., is an unbiased estimator.
V(Y..)—bzz V(g =tc

13.39 Refer to Ex. 13.38.
a. E(Y_ Yo )=+t - (T =1 -1
-Y,.)=V(Y.)+V(Y,.,)=2c", since Y,, and Y,, are independent.

13.40 Similar to Ex. 13.38, we have that
Y. kZ.l ] %ZL(MHB#SU)
=M+r2- lTi+l3-+%2-k & =M+Bj+%zik:18u~
a E(V.)=p+B, =u,, V(V.) =LY V(g,)=1c".

b. E(Yoj_Y-j’):u+Bj_(M+Bj’):Bj_Bj"
C. V(\T,j —\7,],)=V(\7,j)+V(\7,j,)=%02, since \7,1- and \7] are independent.

13.41 The sums of squares are Total SS =1.7419, SST =.0014, SSB = 1.7382, and SSE =
.0023. The ANOVA table is given below:

Source df SS MS F
Program 5 1.7382 3476 7724
Treatments 1 .0014 .0014 3.11
Error 5 .0023 .00045

Total 11 1.7419

a. To test Hp: w; = o, the F—statistic is F = 3.11 with 1 numerator and 5 denominator
degrees of freedom. Since F s = 6.61, we fail to reject the hypothesis that the mean
CPU times are equal. This is the same result as Ex. 12.10(b).

b. From Table 7, p—value > .10.

c. Using the Applet, p—value = P(F>3.11) = .1381.

d. Ignoring the round—off error, s = 2MSE.

13.42 Using the formulas from this section, TSS = 674 — 588 = 86, SSB = 20436728 _ CM = 32,

SST = w — CM =42. Thus, SSE =86 — 32 — 42 = 12. The remaining calculations
are given in the ANOVA table below.
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Source df SS MS F
Treatments 3 42 14 7

Blocks 2 32 16
Error 6 12 2
Total 11 86

The F-statistic is F = 7 with 3 and 6 degrees of freedom. With o= .05, F s =4.76 so we
can reject the hypothesis that the mean resistances are equal. Also, .01 < p—value <.025
from Table 7.

13.43 Since the four chemicals (the treatment) were applied to three different materials, the
material type could add unwanted variation to the analysis. So, material type was treated
as a blocking variable.

13.44 Here, R will be used to analyze the data. We will use the letters A, B, C, and D to denote
the location and the numbers 1, 2, 3, 4, and 5 to denote the company.

> rate <- c(736, 745, 668, 1065, 1202, 836, 725, 618, 869, 1172, 1492,
1384,1214, 1502, 1682, 996, 884, 802, 1571, 1272)
> location <- factor(c(rep(*“A”,5),rep(“B”,5),rep(*“C”,5),rep(*“D”,5)))
> company <- factor(c(1:5,1:5,1:5,1:5))
> summary(aov(rate ~ company + location))
Df Sum Sq Mean Sq F value Pr(cF)
company 4 731309 182827 12.204 0.0003432 ***
location 3 1176270 392090 26.173 1.499e-05 ***
Residuals 12 179769 14981

Signif. codes: 0O "**** 0.001 **** 0.01 **" 0.05 *." 0.1 " " 1

a. This is a randomized block design (applied to sampled data).

b. The F-statistic is F = 26.173 with a p—value of .00001499. Thus, we can safely
conclude that there is a difference in mean premiums.

c. The F-statistic is F = 12.204 with a p—value of .0003432. Thus, we can safely
conclude that there is a difference in the locations.

d. See parts b and ¢ above.

13.45 The treatment of interest is the soil preparation and the location is a blocking variable.
The summary statistics are:
CM = (162)*/12 = 2187, TSS = 2298 — CM = 111, SST = 8900/4 — CM = 38,
SSB =6746/3 - CM = 61.67. The ANOVA table is below.

Source df SS MS F
Treatments 2 38 19  10.05
Blocks 3 61.67 20.56 10.88
Error 6 1133 1.89

Total 11 111
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a. The F—statistic for soil preparations is F = 10.05 with 2 numerator and 6 denominator
degrees of freedom. From Table 7, p—value <.025 so we can reject the null
hypothesis that the mean growth is equal for all soil preparations.

The F—statistic for the locations is F = 10.88 with 3 numerator and 6 denominator

degrees of freedom. Here, p—value < .01 so we can reject the null hypothesis that the
mean growth is equal for all locations.

13.46 The ANOVA table is below.

Source df SS MS F
Treatments 4 452 113  8.37
Blocks 3 1.052 .3507 25.97
Error 12 .162 .0135

Total 19 1.666

a. To test for a difference in the varieties, the F—statistic is F = 8.37 with 4 numerator
and 12 denominator degrees of freedom. From Table 7, p—value <.005 so we would
reject the null hypothesis at o = .05.

The F—statistic for blocks is 25.97 with 3 numerator and 12 denominator degrees of

freedom. Since Fos = 3.49, we reject the hypothesis of no difference between blocks.

13.47 Using a randomized block design with locations as blocks, the ANOVA table is below.

Source d.f SS MS F
Treatments 3  8.1875 2729 140
Blocks 3 71875 2396 1.23
Error 9 17.5625 1.95139

Total 15 32.9375

With 3 numerator and 9 denominator degrees of freedom, F ¢s = 3.86. Thus, neither the
treatment effect nor the blocking effect is significant.

13.48 Note that there are 2bk observations. So, let yjji denote the

DR

receiving the i™

treatment. Therefore, with CM =

I'™ observation in the j™ block

2bk ’

TSS = Zi y yi — CM with 2bk — 1 degrees of freedom,

SST

SSB =

_ 2 Vi
2b

2 Vo
2K

— CM with k — 1 degrees of freedom,

, with b — 1 degrees of freedom, and

SSE = TSS — SST — SSB with 2bk — b — k — 1 degrees of freedom.
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13.49 Using a randomized block design with ingots as blocks, the ANOVA table is below.

Source d.f SS MS F
Treatments 2 131.901 65.9505 6.36
Blocks 6 26890 44.8167

Error 12 124.459 10.3716

Total 20 524.65

To test for a difference in the mean pressures for the three bonding agents, the F—statistic
is F = 6.36 with 2 numerator and 12 denominator degrees of freedom. Since F s = 3.89,
we can reject Hy.

13.50 Here, R will be used to analyze the data. The carriers are the treatment levels and the

blocking variable is the shipment.
> time <- c¢(15.2,14.3, 14.7, 15.1, 14.0, 16.9, 16.4, 15.9, 16.7, 15.6,

17.1, 16.1, 15.7, 17.0, 15.5) # data is entered going down columns
> carrier <- factor(c(rep('I1",5),rep("'11",5),rep('I11",5)))
> shipment <- factor(c(1:5,1:5,1:5))

> summary(aov(time ~ carrier + shipment))

Df Sum Sgq Mean Sq F value Pr(GF)
carrier 2 8.8573 4.4287 83.823 4.303e-06 ***
shipment 4 3.9773 0.9943 18.820 0.000393 ***
Residuals 8 0.4227 0.0528

Signif. codes: O "**** 0.001 **** 0.01 **" 0.05 "." 0.1 ° " 1
>

To test for a difference in mean delivery times for the carriers, from the output we have
the F—statistic F = 83.823 with 2 numerator and 8 denominator degrees of freedom.
Since the p—value is quite small, we can conclude there is a difference in mean delivery
times between carriers.

A randomized block design was used because different size/weight shipments can also
affect the delivery time. In the experiment, shipment type was blocked.

13.51 Some preliminary results are necessary in order to obtain the solution (see Ex. 13.37-40):
(D E(Yijz) =V (Y;)+[E(Y; P =0 +(u+1 + B, )’

(2) With Y, Zbl—kzi,jYi,- CEMLD) =1, V(Y.) =50, EV.)=g0’ +u
(3) With Y_.j :%ZiYij 5 E(Y_oj):l“t-i_ﬁjav(Y_oj):%Gz’ E(Y_.?):%02+(H+Bj)2
@ With Y, =33 Yy, EN) =p+1, V() =40", EYD) =0 +(u+1)’

a. E(MST)=%E[Z .. —\7..)2]=%[ZiE(\7if)—kE(\7.f |

2 2
el ]t
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b. E(MSB) =$E[Zj(\7.,- —Y..)2]=$[Z,- (7;)-be(r.)

2

K o’ 2 2 o 2 2 K 2
=——| > | —+u +2up. +B; |-b —+ =c +——) B7.
b—l[zl[k hor b, BJ] (bk W7ot g 2P

c. Recall that TSS = zi jYij2 —bkY_?. Thus,

bk
Therefore, since E(SSE) = E(TSS) — E(SST) — E(SSB), we have that

E(TSS)= 3, (0 + 2 +77 +B7 )~ bk(6—2+ uzj = (bk =)o +bY 7 +kY 7.

E(SSE) = E(TSS) — (k — )E(MST) — (b — 1)E(MSB) = (bk —k — b + 1)6>.

SSE E(MST) = 6°.

Finally, since MST = —————,
bk -k -b+1

13.52 From Ex. 13.41, recall that MSE = .00045 with 5 degrees of freedom and b = 6. Thus, a
95% CI for the difference in mean CPU times for the two computers is

1.553-1.575+ 2.5711/.0004Si%i =—-.022+.031 or (—.053, .009).

This is the same interval computed in Ex. 12.10(c).

13.53 From Ex. 13.42, MSE = 2 with 6 degrees of freedom and b = 3. Thus, the 95% Cl is
7-5+2.447,/2(3) =2 +2.83.

13.54 From Ex. 13.45, MSE = 1.89 with 6 degrees of freedom and b = 4. Thus, the 90% CI is
16-12.5+1.943,/1.89(3) =3.5+ 1.89 or (1.61, 5.39).

13.55 From Ex. 13.46, MSE = .0135 with 12 degrees of freedom and b =4. The 95% Cl is
2.689-2.544+2.179,/.0135(%) = .145 + .179.

13.56 From Ex. 13.47, MSE = 1.95139 with 9 degrees of freedom and b =4. The 95% Cl is

2+ 2.26241.95139‘%; =2+2.23.

This differs very little from the CI computed in Ex. 13.31(b) (without blocking).

13.57 From Ex. 13.49, MSE = 10.3716 with 12 degrees of freedom and b = 7. The 99% Cl is

71.1-75.9+ 3.055410.3716‘%; =-4.8+5.259.

13.58 Refer to Ex. 13.9. We require an error bound of no more than .02, so we need n such that

2,/6%(2)<.02,

The best estimate of 6* is MSE = .0025, so using this in the above we find that n > 50.
So the entire number of observations needed for the experiment is 4n > 4(50) = 200.
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Following Ex. 13.27(a), we require 2\/% <10, where 2 ~ tps. Estimating ¢* with MSE

= 62.333, the solution is na > 2.49, so at least 3 observations are necessary.

Following Ex. 13.27(c), we require 2./c” (%) <20 where 2 ~ t(s. Estimating o” with

MSE = 62.333, the solution is n > 1.24, so at least 2 observations are necessary. The total
number of observations that are necessary is 3n > 6.

Following Ex. 13.45, we must find b, the number of locations (blocks), such that

2,/c? (%) <1,
where 2 = t(ys. Estimating o’ with MSE = 1.89, the solution is b > 15.12, so at least 16

locations must be used. The total number of locations needed in the experiment is at least
3(16) = 48.

Following Ex. 13.55, we must find b, the number of locations (blocks), such that

2,/6%(2)<.5,
where 2 = t,s. Estimating o with MSE = 1.95 139, the solution is b > 62.44, so at least
63 locations are needed.

The CI lengths also depend on the sample sizes n, andn, , and since these are not equal,
the intervals differ in length.

a. From Example 13.9, tpo417 = 2.9439. A 99.166% CI for p; — W is
75.67—78.43+2.9439(7.937) /¢ ++ =-2.76 + 13.00.

b. The ratio is M =.97154.
2(13.00)

C. The ratios are equivalent (save roundoff error).

d. If we divide the CI length for p; — ps (or equivalently the margin of error) found in Ex.
13.9 by the ratio given in part b above, a 99.166% CI for p; — p3 can be found to be
4.84 +13.11/.97154 = 4.84 + 13.49.

Refer to Ex. 13.13. Since there are three intervals, each should have confidence

coefficient 1 —.05/3 = .9833. Since MSE = .4735 with 162 degrees of freedom, a critical
value from the standard normal distribution can be used. So, since o =1—-.9833 =.0167,
we require Zy» = Z 00833 = 2.39. Thus, for pairs (i, j) of (1, 2), (1, 3) and (2, 3), the Cls are

(1,2): —0.29i2.391/.47351$+ﬁi or —0.29 £.294
(1,3): —1.65i2.391/.47351%+§i or —1.65+.459.
(2,3): —1.36i2.391/.4735i$+§i or —1.36+.420

The simultaneous coverage rate is at least 95%. Note that only the interval for (1, 2)
contains 0, suggesting that p; and p, could be equal.
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13.66

13.67

13.68

13.69

13.70

In this case there are three pairwise comparisons to be made. Thus, the Bonferroni
technique should be used with m = 3.

Refer to Ex. 13.45. There are three intervals to construct, so with o = .10, each CI should
have confidence coefficient 1 —.10/3 =.9667. Since MSE = 1.89 with 6 degrees of
freedom, we require t ;67 from this t—distribution. As a conservative approach, we will
use to; = 3.143 since t ;47 is not available in Table 5 (thus, the simultaneous coverage

rate is at least 94%). The intervals all have half width 3.143,/1.89(%) = 3.06 so that the

intervals are:
(1,2): -3.5+3.06 or (—6.56,—.44)
(1,3):.5+3.06 or (-2.56,3.56)
(2,3):4.0+3.06 or (.94, 7.06)

Following Ex. 13.47, MSE = 1.95139 with 9 degrees of freedom. For an overall
confidence level of 95% with 3 intervals, we require t o253 = tog3. By approximating this

with t 1, the half width of each interval is 2.821,/1.95 139i%i =2.79. The intervals are:

(1,4): —2+2.79 or (-4.79,.79)
(2, 4): —1 £2.79 or (-3.79, 1.79)
(3,4):—75+2.79  or (-3.54,2.04)

a. Bo + B3 is the mean response to treatment A in block III.
b. B; is the difference in mean responses to chemicals A and D in block II1.

a. The complete model is Y = By + B1X; + PaX2 + €, where
{1 if method A {1 if method B

X, =

0  otherwise 0 otherwise

Then, we have

73]
83
76
68
80

Y =54 X =

74

71

79

95

87

87
-11
20.67
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Thus, SSEc = Y'Y — B'X'Y = 65,286 — 54,787.33 = 498.67 with 11 — 3 = 8 degrees of
freedom. The reduced model is Y = B + €, so that X is simply a column vector of eleven
I’sand (XX)' =L . Thus, B =¥ =76.3636. Thus, SSEg = 65,286 — 64,145.455 =
1140.5455. Thus, to test Hop: 1 = B2 = 0, the reduced model F—test statistic is

F (1140.5455-498.67)/2 _ 515

498.67/8
with 2 numerator and 8 denominator degrees of freedom. Since F o5 = 4.46, we reject Ho.

b. The hypotheses of interest are Hy: pa — pg = 0 versus a two—tailed alternative. Since
MSE = SSE./8 = 62.333, the test statistic is

] =28 — 68
62.333(§+éj
Since t 5 = 2.306, the null hypothesis is not rejected: there is not a significant difference
between the two mean levels.

c. For part a, from Table 7 we have .025 < p—value <.05. For part b, from Table 5 we
have 2(.05) < p—value <2(.10) or .10 < p—value < .20.

The complete model is Y = B + B1X; + BaXa + B3X3 + BaXa + PsXs +¢€, where X; and X; are
dummy variables for blocks and X3, X4, Xs are dummy variables for treatments. Then,

5 110100
3 110010
8 1100 01
4 110000 (12 4 4 3 3 3] [ 6 ]
9 101100 4 401 11 -2
Y:8X=101010X'X:404111/}=2
13 101001 311300 1
6 101000 311030 -1
7 100100 1311 0 0 3] 4 |
4 1000T10
9 1000 01
8 100000

Thus_, SéEc = 674_1 — 662 =12 with lé — 6 = 6 degrees of freedom. The reduced model is
Y =By + BiX1 + P2X2 + €, where X; and X; are as defined in the complete model. Then,

25 =25 =25 7
(XX)"'=|-25 5 25|, p=|2
-25 25 5 -2
so that SSEg = 674 — 620 = 54 with 12 — 3 =9 degrees of freedom. The reduced model
F—test statistic is F = *22 =7 with 3 numerator and 6 denominator degrees of

freedom. Since F s =4.76, Hy is rejected: the treatment means are different.
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13.72

13.73

13.74

13.75

13.76

13.77

(Slmllar to Ex. 1371) The full model is Y = B() + B]X] + BzXz + B3X3 + B4X4 + B5X5 +g,
where X, X2, and X3 are dummy variables for blocks and X4 and X5 are dummy variables
for treatments. It can be shown that SSE; = 2298 — 2286.6667 = 11.3333 with 12-6=6
degrees of freedom. The reduced model is Y = By + B4Xs + PsXs +€, and SSEg = 2298 —
2225 =73 with 12 — 3 =9 degrees of freedom. Then, the reduced model F—test statistic

is F =120 = 10.88 with 3 numerator and 6 denominator degrees of freedom.

Since Since F o5 = 4.76, Hy is rejected: there is a difference due to location.

See Section 13.8. The experimental units within each block should be as homogenous as
possible.

a. For the CRD, experimental units are randomly assigned to treatments.
b. For the RBD, experimental units are randomly assigned the k treatments within each
block.

a. Experimental units are the patches of skin, while the three people act as blocks.

b. Here, MST = 1.18/2 = .59 and MSE = 2.24/4 = .56. Thus, to test for a difference in
treatment means, calculate F = .59/.56 = 1.05 with 2 numerator and 4 denominator
degrees of freedom. Since F s = 6.94, we cannot conclude there is a difference.

Refer to Ex. 13.9. We have that CM = 58.08, TSS = .035, and SST =.015. Then, SSB =
BEOTEN M = 015 with 2 degrees of freedom. The ANOVA table is below:

Source df SS MS F
Treatments 3 .015 .00500 6.00

Blocks 2 .015 .00750 9.00
Error 6 .005 .000833
Total 11 .035

a. To test for a “sand” effect, this is determined by an F—test for blocks. From the
ANOVA table F =9.00 with 2 numerator and 6 denominator degrees of freedom.
Since F o5 = 5.14, we can conclude that the type of sand is important.

b. To test for a “concrete type” effect, from the ANOVA table F = 6.00 with 3
numerator and 6 denominator degrees of freedom. Since F s =4.76, we can conclude
that the type of concrete mix used is important.

c. Compare the sizes of SSE from Ex. 13.9 and what was calculated here. Since the
experimental error was estimated to be much larger in Ex. 13.9 (by ignoring a block
effect), the test for treatment effect was not significant.

Refer to Ex. 13.76
a. A95% Clisgivenby 2.25-2.166 2.447,/.000833i%i =.084 + .06 or (.024, .144).

b. Since the SSE has been reduced by accounting for a block effect, the precision has
been improved.
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a. This is not a randomized block design. There are 9 treatments (one level of drug 1 and
one level of drug 2). Since both drugs are factors, there could be interaction present.

b. The second design is similar to the first, except that there are two patients assigned to
each treatment in a completely randomized design.

a. We require 20% <10, so that n> 16.

b. With 16 patients assigned to each of the 9 treatments, there are 16(9) — 9 = 135 degrees
of freedom left for error.

C. The half width, using tgs = 2, is given by 2(20),/&+ & = 14.14.

In this experiment, the car model is the treatment and the gasoline brand is the block.

Here, we will use R to analyze the data:
> distance <- c(22.4, 20.8, 21.5, 17.0, 19.4, 18.7, 19.2, 20.2, 21.2)
> model <- factor(c('A"™,"A"™,"A"™, "B","B","B","C","C","C"))
> gasoline <- factor(c("X","y", mz", X", my"™, "Z","X","Y","Z"))
> summary(aov(distance ~ model + gasoline))
Df Sum Sq Mean Sq F value Pr(F)
model 2 15.4689 7.7344 6.1986 0.05951 .
gasoline 2 1.3422 0.6711 0.5378 0.62105
Residuals 4 4.9911 1.2478

Signif. codes: 0 "**** 0.001 **** 0.01 *"*" 0.05 *." 0.1 * = 1

a. To test for a car model effect, the F—test statistic is F = 6.1986 and by the p—value
this is not significant at the a = .05 level.

b. To test for a gasoline brand effect, the F—test statistic is F = .5378. With a p—value of
.62105, this is not significant and so gasoline brand does not affect gas mileage.

Following Ex. 13.81, the R output is
> summary(aov(distance~model))

Df Sum Sq Mean Sq F value Pr(F)
model 2 15.4689 7.7344 7.3274 0.02451 *
Residuals 6 6.3333 1.0556

Signif. codes: 0 "**** 0.001 *"*** 0.01 "*" 0.05 "." 0.1 " " 1

a. To test for a car model effect, the F—test statistic is F = 6.1986 with p—value = .02451.
Thus, with o = .05, we can conclude that the car model has an effect on gas mileage.

b. In the RBD, SSE was reduced (somewhat) but 2 degrees of freedom were lost. Thus
MSE is larger in the RBD than in the CRD.

c. The CRD randomly assigns treatments to experimental units. In the RBD, treatments
are randomly assigned to experimental units within each block, and this is not the
same randomization procedure as a CRD.

a. This is a completely randomized design.
b. The sums of squares are: TSS = 183.059, SST = 117.642, and SSE = 183.059 —
117.642 = 65.417. The ANOVA table is given below
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Source d.f SS MS F
Treatments 3 117.642 39.214 7.79
Error 13 65417 5.032

Total 16 183.059

To test for equality in mean travel times, the F—test statistic is F = 7.79 with 3 numerator
and 13 denominator degrees of freedom. With F; = 5.74, we can reject the hypothesis
that the mean travel times are equal.

c. With ¥, =26.75 and y, =32.4, a 95% CI for the difference in means is
26.75-32.4+2.160,/5.032(§ + 1) =—5.65 £ 3.25 or (-8.90, —2.40).

13.83 This is a RBD with digitalis as the treatment and dogs are blocks.
a. TSS=703,681.667, SST =524,177.167, SSB = 173,415, and SSE = 6089.5. The

ANOVA table is below.
Source d.f SS MS F
Treatments 2 524,177.167 262,088.58 258.237
Blocks 3 173,415 57,805.00  56.95
Error 6 6,089.5 1,014.9167
Total 11 703,681.667

b. There are 6 degrees of freedom for SSE.

c. To test for a digitalis effect, the F—test has F = 258.237 with 2 numerator and 6
denominator degrees of freedom. From Table 7, p—value <.005 so this is significant.

d. To test for a dog effect, the F—test has F = 56.95 with 3 numerator and 6 denominator
degrees of freedom. From Table 7, p—value <.005 so this is significant.

e. The standard deviation of the difference between the mean calcium uptake for two

levels of digitalis is s,[+-+-=/1014.9167(} + ) =22.527.
f. The Cl s given by 1165.25—1402.5 +2.447(22.53) = -237.25 + 55.13.

13.84 We require 24/c(2) <20. From Ex. 13.83, we can estimate 6> with MSE = 1014.9167

so that the solution is b > 20.3. Thus, at least 21 replications are required.

13.85 The design is completely randomized with five treatments, containing 4, 7, 6, 5, and 5
measurements respectively.
a. The analysis is as follows:
CM = (20.6)*/27 = 15.717
TSS=17,500-CM =1.783

SST= 24 4249 _CcM=1212,df =4

SSE =1.783 —1.212 = .571, d.f. = 22.
To test for difference in mean reaction times, F = 2223 = 11.68 with 4 numerator
and 22 denominator degrees of freedom. From Table 7, p—value <.005.
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b. The hypothesis is Ho: pa — pup = 0 versus a two—tailed alternative. The test statistic is
It]= |625-920]  _ 273,

.02596[14—1}
45

The critical value (based on 22 degrees of freedom) is t s = 2.074. Thus, Hy is
rejected. From Table 5, 2(.005) < p—value <2(.01).

13.86 This is a RBD with people as blocks and stimuli as treatments. The ANOVA table is
below.

Source df SS MS F
Treatments 4 .787 .197 27.7

Blocks 3 .140 .047
Error 12 .085 .0071
Total 19 1.012

To test for a difference in the mean reaction times, the test statistic is F = 27.7 with 4
numerator and 12 denominator degrees of freedom. With F s =3.25, we can reject the
null hypothesis that the mean reaction times are equal.

13.87 Each interval should have confidence coefficient 1 —.05/4 = .9875 = .99. Thus, with 12
degrees of freedom, we will use the critical value tyos = 3.055 so that the intervals have a

half width given by 3.0551/.0135@; =.251. Thus, the intervals for the differences in

means for the varieties are
pa — up: 320 £.251 pg — up: .145 £ .251
uc — up: .023 £.251 UE — Up: — 124 + 251

b k VA b k — - =
1388 TSS=3 > (Yy=Y) =3 > (V=YY =Y+, =Y Y =Y
= ZL Zik:l (Y. —Y_+Y,j —Y_+Yij -Yi. -V, +Y)? «— expand as shown

- ZL Zik:l (Yi -Y) + ZL z:(:l (Y'J' -Y)’ + Z?:l z:;l (Y =Y =Y, +Y)’

+ cross terms (= C)
k - b - b k _
= bzi:IWi- -Y)? + kzj:I(Y.j -Y)?+ ZHZH(YU' =Y. —Y, +Y)*+C
=SST+SSB+SSE + C.

So, it is only left to show that the cross terms are 0. They are expressed as

c=2)" (V,; -} (V.-¥) ()

#2)0 (=Y (Y -V =Y +Y) ()

ko VA b — _ _
+2 Y=Y (Y=Y =Y, +Y). (3
Part (1) is equal to zero since
b o o b
ijl(Y-j -Y) =Zj:1(%2iYij _ﬁzinij ): %Zinij _ﬁzinij =0.
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Part (2) is equal to zero since
k N k
Zi:1(YiJ —Y. _Y°J +Y)= zizl(Yij _%ZjYij _%EiYij +b_1kzinij)
=ZY; _%Einij -2V +%ZUYU =0.

A similar expansion will shown that part (3) is also equal to 0, proving the result.

13.89 a. We have that Y;; and Y, are normally distributed. Thus, they are independent if their

covariance is equal to 0 (recall that this only holds for the normal distribution). Thus,
Cov(Y;;,Y; ) =Cov(p+T, +[3j +e;, 1L+ T, +Bj, +e;)= Cov(Bj +g ,Bj, +&;)

=Cov(B;,B;)+Cov(B;,&;)+Cov(g;,B;)+ Cov(g;,g;) =0,

by independence specified in the model. The result is similar for Y; and Y;; .

ij°

ij>

b. Cov(Y;;,Y;;) =Cov(p+71, +B; +&;,u+1, +B; +&;)=Cov(B; +¢&;,B; +¢&;)

ij >

=V({B;)= o4, by independence of the other terms.

c. When o =0, Cov(Y;,Y;;)=0.

ij°

13.90 a. From the model description, it is clear that E(Y;j)) = u + ti and V(Yjj) = 64 + ..
b. Note that Y,, is the mean of b independent observations in a block. Thus,
E(Y.)=E(Yjj) = p+ 7 (unbiased) and V (Y,,) =V (Y;) = L (o +07).
c. From part b above, E(Y,, =Y,.)=p+1, —(L+7,)=1, - T, .

— 1 <o 1 <o 1 <o 1 b
d. V(Y. -Y..) :V[}’H_Ti +62j=1Bi +BZi=18ij _(l’H—Ti’ +BZJ=1B1 +BZi=18i’j j}

1 1 1 1 205
:V{BZLSU _BZ?=18i'i:| :b_zv Eib:lgij ]+b_2V [Z?:lgiﬁ]: b

. VA k k k k
1391 First, Y,; =4+ > (W+T+Bj+e)=pn+i) T +B +1), & =n+B+ED. &
. va — k
a. Using the above, E(Y,;)=p and V(Y,)) =V(B;)+L5D. V(g;) =05 ++0..

b. E(MST)=oc’ + (%)z:(:lrf as calculated in Ex. 13.51, since the block effects cancel

here as well.

) 2
=0, +kog

o

> (=)
E(MSB) = kE Jfb1

d. E(MSE)=oc_, using a similar derivation in Ex. 13.51(c).
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13.92 a. 6} = MSE.

., _MSB-MSE

b. 65 " . By Ex. 13.91, this estimator is unbiased.

13.93 a. The vector AY can be displayed as

ZiY'

- -
YI\/__YZ \/HY
J2 Y
AY = Y, +Y, -2, | U,
23 :
Y 4Y, +ootY —(n=1y, | LYnl

Jn(n=1)

n 2 o 14t _ 72 n-1
Then, > Y? =YY =Y4'AY =nY >+ "U,.
b. Write L; = ZLI ain j»>a linear function of Yy, ..., Yn. Two such linear functions, say L;
and Ly are pairwise orthogonal if and only if Z?:l a;a, = 0 and so L;j and Ly are
independent (see Chapter 5). Let Ly, Ly, ..., L, be the n linear functions in AY. The

constants ajj, j = 1, 2, ..., n are the elements of the i™ row of the matrix A. Moreover, if
any two rows of the matrix 4 are multiplied together, the result is zero (try it!). Thus, L,
Lo, ..., Ly are independent linear functions of Yy, ..., Y.

C. Z:L(Yi ~-Y) = Z‘in:lYi2 -nY?=nY’+ zi:lUi —nY? = z:Ui . Since U; is
independent of x/ﬁY_ fori=1,2,...,n—1, Zin:l (Y, —Y_)2 and Y are independent.

d. Define
URCA S SR SR SECEEL LIPS SCRRN
W:Z|=1( |2 M) =Z|=1W M) :z'=1( ) +n(Y M) :X1+x2'
c

2 2 2
(o) (&) (&)

Now, W is chi—square with n degrees of freedom, and X, is chi—square with 1 degree of

G/\/ﬁ

can use moment generating functions to show that
(1-20)"2 =m,, (t) = m, (OHm, (1) =m, (120",

Thus, m, (t)=(1-2t)"""" and this is seen to be the mgf for the chi-square distribution

— 2
freedom since X, = ( Y -u ] =Z°. Since X; and X; are independent (from part C), we

with n — 1 degrees of freedom, proving the result.
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13.94 a. From Section 13.3, SSE can be written as SSE = Z:;l (n, =S/} . From Ex. 13.93,
each Y, is independent of S’ = ZL (Y; ~Y,)* . Therefore, since the k samples are

independent, Y_l,. . .,Y_k are independent of SSE.

b. Note that SST = Z:;l n(Y,—-Y)*,and Y can be written as
_ Zk ny,
Y ==
n
Since SST can be expressed as a function of only Y,,....Y, , by part (a) above we have

that SST and SSE are independent. The distribution of F = 1\1\;[—:; was derived in Ex.
13.6.
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a. Ho: p1 = .41, p2 =.10, p3 = .04, ps = .45 vs. Ha: not Hy. The observed and expected
counts are:
A B AB @)
observed 89 18 12 81
expected 200(.41)=82 200(.10)=20 200(.04)=8 200(.45)=90

. . . . — 2 - 2 — 2 — 2 .
The chi-square statistic is X * = &2 L8220 (28 4 GL30 = 3 696 with 4 —1 =3

degrees of freedom. Since y7, = 7.81473, we fail to reject Ho; there is not enough
evidence to conclude the proportions differ.

b. Using the Applet, p—value = P(y* > 3.696) = .29622.

a. Ho: p1 = .60, p2 = .05, p3 = .35 vs. Ha: not Hy. The observed and expected counts are:

admitted unconditionally admitted conditionally refused
observed 329 43 128
expected 500(.60) =300 500(.05) =25 500(.35) =175

The chi-square test statistic is X * = (3293_03000)2 + (43;5)2 + B Y =28386 with3—1=2

degrees of freedom. Since y 7, = 7.37776, we can reject Hg and conclude that the current
admission rates differ from the previous records.

b. Using the Applet, p—value = P(y* > 28.386) = .00010.

The null hypothesis is Hy: p1 = p2 = p3 = ps = + vs. Ha: not Hy. The observed and
expected counts are:
lane 1 2 3 4
observed 294 276 238 192
expected 250 250 250 250

_ 2 _ 2 _ 2 _ 2 .
_ (294-250)°+(276-250)° +(238-250)°+(192-250° _ 54 4@ \with 4 —] = 3

. . . . 2
The chi—square statistic is X 5%

degrees of freedom. Since y 3, = 7.81473, we reject Ho and conclude that the lanes are
not preferred equally. From Table 6, p—value <.005.

Note that R can be used by:

> lanes <- c(294,276,238,192)

> chisq-test(lanes,p = c(-25,.25,.25,.25)) # p 1Is not necessary here
Chi-squared test for given probabilities

data: lanes
X-squared = 24.48, df = 3, p-value = 1.983e-05

287
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14.4

145

14.6

The null hypothesis is Ho: p1 =p2=... =p7 = 1 vs. Ha: not Hy. The observed and
expected counts are:

SU M T W R F SA
observed 24 36 27 26 32 26 29
expected 28.571 28.571 28.571 28.571 28.571 28.571 28.571

. . . . — 2 — 2 — 2 .
The chi-square statistic is X ? = G220 +O028T) . +2TD. — 24 48 with 7 -1 =6

degrees of freedom. Since %, = 12.5916, we can reject the null hypothesis and conclude

that there is evidence of a difference in percentages of heart attacks for the days of the
week

a. Let p = proportion of heart attacks on Mondays. Then, Ho: p= 4 vs. Hs: p> 4. Then,
p=36/200 = .18 and from Section 8.3, the test statistic is
18-1/7 — 1 50

Z= [(177)(6/7)
200

Since 25 = 1.645, we fail to reject Hy.

b. The test was suggested by the data, and this is known as “data snooping” or “data
dredging.” We should always apply the scientific method: first form a hypothesis and
then collect data to test the hypothesis.

€. Monday has often been referred to as the most stressful workday of the week: it is the
day that is farthest from the weekend, and this realization gets to some people.

a. E(n; —n;)=E(n;)-E(n;)=np; —np;.

b. Define the sample proportions p; =n;/n and p; =n;/n. Then, P, — P; is unbiased
for p; — pj from part a above.
c.V(n,—n;)=V(n;)+V(n;)—2Cov(n;,n;)=np;(1-p;)+np;(1—p;)+2np; p;.

d. V(P — ) =5V (M —n) =5 (p(1-p)+ ;1= p))+2pp;).

e. A consistent estimator is one that is unbiased and whose variance tends to 0 as the
sample size increases. Thus, p; — p; is a consistent estimator.

f. Given the information in the problem and for large n, the quantity
f)i - pj _(pi - pj)

Gf’i—ﬁj

Z, =

is approx. normally distributed, where Cpop, = \/%(pi (I-p)+p;A-p;)+2p;p; ) .

Now, since f); and p; are consistent estimators,

W = Gﬁi*ﬁj =\/%(pl(1_ pi)+ pj(l_ p])+2p|p])

Gpop, A H(BA=P)+ P (- P;)+2p D))
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tends to 1 (see Chapter 9). Therefore, the quantity
ﬁipj(pipj){Gﬁﬁ,Jz pi—P; —(pi—P))
O, Spp ) A (BiI=P)+ P (1= P +2pP)
has a limiting standard normal distribution by Slutsky’s Theorem. The expression for the
confidence interval follows directly from the above.

Zan =

14.7 From Ex. 14.3, p, =.294 and P, =.192. A 95% (large sample) CI for p; — p4 is

294-.192+1 .96\/ 294(.706) +. 1925.;())5) F20290C192) _ 1001 043 or (1059, .145).
There is evidence that a greater proportion use the “slow” lane since the CI does not
contain 0.

14.8 The hypotheses are Hy: ratio is 9:3:3:1 vs. Ha: not Hyp. The observed and expected counts
are:
category 1 (RY) 2(WY) 3 (RG) 4 (WGQG)
observed 56 19 17 8
expected 56.25 18.75 18.75 6.25

The chi-square statistic is X* = (56;2%5)2 + (19157'25)2 + (17157;5)2 + (8;6_‘2255)2 =.658 with 3
degrees of freedom. Since y7, = 7.81473, we fail to reject Ho: there is not enough

evidence to conclude the ratio is not 9:3:3:1.

149 a. From Ex. 14.8, p, =.56 and P, =.17. A 95% (large sample) CI for p; — ps is

56(.44)+.17(.83) + 2(.56)(.17)
100

.56—.17i1.96\/ = 39+ .149 or (241, .539).

b. There are three intervals to construct: p; — P2, P1 — P3, and p; — P4. So that the
simultaneous confidence coefficient is at least 95%, each interval should have confidence
coefficient 1 — (.05/3) =.98333. Thus, we require the critical value z pg33 =2.39. The
three intervals are

.56__19i2.39\/.56(.44)+.19(.81)+2(.56)(.19) s s
100

'56_.17i2.39\/.56(.44)+.17(.83)+2(.56)(.17) o4 18
100

56—.08+ 2.39\/ 26(44)+ 'Og(i)f)“ 2(36)(08) _ 4o 53,
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14.10

14.11

14.12

The hypotheses of interest are Hy: p1 = .5, p2 = .2, p3 = .2, ps = .1 vs. Ha: not Hy. The
observed and expected counts are:

defect 1 2 3 4
observed 48 18 21 13
expected 50 20 20 10

It is found that X* = 1.23 with 3 degrees of freedom. Since y%, = 7.81473, we fail to
reject Hy; there is not enough evidence to conclude the proportions differ.

This is similar to Example 14.2. The hypotheses are Hy: Y is Poisson(A) vs. Ha: not Hy.
Using Y to estimate A, calculate ¥ = 15X, Y, f; =2.44. The expected cell counts are

estimated as E(n,) = np, = 400%:"(_2'44). However, after Y = 7, the expected cell

count drops below 5. So, the final group will be compiled as {Y > 7}. The observed and
(estimated) expected cell counts are below:

# of colonies N P, é(ni)
0 56 .087 34.86
1 104 2127 85.07
2 80 .2595 103.73
3 62 2110 84.41
4 42 1287 51.49
5 27 .0628 25.13
6 9 .0255 10.22
7 or more 20 400 —394.96 =5.04

The chi-square statistic is X > = 003480° 4 GOS0 _ 69 47 with § — 2 = 6 degrees of

freedom. Since y %, = 12.59, we can reject Hy and conclude that the observations do not
follow a Poisson distribution.

This is similar to Ex. 14.11. First, ¥ =:%,y, f, =0.48309. The observed and

414
(estimated) expected cell counts are below; here, we collapsed cells into {Y > 3}:

# of accidents  n; P, E(ni)

0 296 .6169 255.38
1 74 298 123.38
2 26 072 29.80
3 18 0131 544

Then, X2 = 2025387 (B34 _ 55 7] with 4 — 2 = 2 degrees of freedom. Since

Yos = 5.99, we can reject the claim that this is a sample from a Poisson distribution.
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14.13 The contingency table with observed and expected counts is below.

All facts known Some facts withheld Not sure Total

Democrat 42 309 31 382
(53.43) (284.378) (44.142)

Republican 64 246 46 356
(49.84) (265.022) (41.138)

Other 20 115 27 162
(22.68) (120.60) (18.72)

Total 126 670 104 900

The chi-square statistic is X > = (222487 | GOMIT) | G181 _ 18 711 with

degrees of freedom (3—1)(3—1) = 4. Since s = 9.48773, we can reject Hy and

conclude that there is a dependence between part affiliation and opinion about a
possible cover up.

. From Table 6, p—value < .005.

Using the Applet, p—value = P(y* > 18.711) = .00090.

. The p—value is approximate since the distribution of the test statistic is only

approximately distributed as chi—square.

14.14 R will be used to answer this problem:

> pl4.14 <- matrix(c(24,35,5,11,10,8),byrow=T,nrow=2)

> chisq.test(pld.14)
Pearson"s Chi-squared test

data: pl4.14
X-squared =

a. In the above, X2 =

7.267, df = 2, p-value = 0.02642

7.267 with a p—value =.02642. Thus with o = .05, we can

conclude that there is evidence of a dependence between attachment patterns and

hours spent in child care.
b. See part a above.

z,lz.l[" ool e 5 bl

Tie; ]Z —”Z, 12

hiC;

iC 2 2n6C;

2

14,15 a. E c
iJ n i~
. TiC,
S PO YD M0 3B ]
(Z XZJI J) c r nj n-n
:”z,lz.lrc - Zj:l =l ro 2 n2
i
e N
=anzlzi:1r__CJ_ 1:|
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b. When every entry is multiplied by the same constant k, then
kn,. )2 2
2 _ ¢ r ( ij _ c r ij

X" = kn[Zjl Zi:l krke, 1} - kn|:Zj1 Zi: j _l:l :

Thus, X* will be increased by a factor of k.

14.16 The contingency table with observed and expected counts is below.

14.17

Church attendance Bush Democrat Total

More than ... 89 53 142
(73.636) (68.364)

Once / week 87 68 155
(80.378)  (74.622)

Once / month 93 85 178
(92.306)  (85.695)

Once / year 114 134 248
(128.604) (119.400)

Seldom / never 22 36 58
(30.077) (27.923)

Total 405 376 781

The chi-square statistic is X > = 82B80° | CO295)7 _ 157525 with (5 1)(2— 1) =

4 degrees of freedom. Since 7% = 9.48773, we can conclude that there is evidence of a

dependence between frequency of church attendance and choice of presidential
candidate.

b. Let p = proportion of individuals who report attending church at least once a week.

To estimate this parameter, we use fp =8+38768 = 3803 A 95% CI for p is

3803 +£1.96,/ 222N = 3803 + 0340,

R will be used to solve this problem:

Part a:

> pl4.17a <- matrix(c(4,0,0,15,12,3,2,7,7,2,3,5),byrow=T,nrow=4)
> chisq.test(pl4.1l7a)

Pearson"s Chi-squared test

data: pl4.l7a
X-squared = 19.0434, df = 6, p-value = 0.004091

Warning message:
Chi-squared approximation may be incorrect in: chisq.test(pl4.17a)

Part b:
> pl4.17b <- matrix(c(19,6,2,19,41,27,3,7,31,0,3,3),byrow=T,nrow=4)
> chisq.test(pl4.17b)
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Pearson"s Chi-squared test

data: pl4.17b
X-squared = 60.139, df = 6, p-value = 4.218e-11

Warning message:
Chi-squared approximation may be incorrect in: chisqg.test(pl4.17b)

a. Using the first output, X* = 19.0434 with a p—value of .004091. Thus we can
conclude at a = .01 that the variables are dependent.

b. Using the second output, X* = 60.139 with a p—value of approximately 0. Thus we
can conclude at a = .01 that the variables are dependent.

c. Some of the expected cell counts are less than 5, so the chi—square approximation
may be invalid (note the warning message in both outputs).

14.18 The contingency table with observed and expected counts is below.

1634 35-54 55+ Total

Low violence 8 12 21 41
(13.16) (13.67) (14.17)
High violence 18 15 7 40

(12.84) (13.33) (13.83)
Total 26 27 28 | 8l

The chi-square statistic is X > = 821907 T8 — 11 18 with 2 degrees of freedom.

Since %, = 5.99, we can conclude that there is evidence that the two classifications are
dependent.

14.19 The contingency table with the observed and expected counts is below.

No Yes Total
Negative 166 1 167
(151.689) (15.311)
Positive 260 42 302

(274.311) (27.689)
Total 426 43 469

a. Here, X* = %++% = 22.8705 with 1 degree of freedom. Since
Ao = 3.84, Hy is rejected and we can conclude that the complications are dependent

on the outcome of the initial ECG.
b. From Table 6, p—value <.005.

14.20 We can rearrange the data into a 2x2 contingency table by just considering the type A
and B defects:
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B B Total
A 48 18 66
(45.54) (20.406)
A 21 13 34

(23.46) (10.54)
Total 69 31 | 100

Then, X* = 1.26 with 1 degree of freedom. Since x>, = 3.84, we fail to reject Hy: there is
not enough evidence to prove dependence of the defects.

14.21 Note that all the three examples have n = 50. The tests proceed as in previous exercises.
For all cases, the critical value isy 5 = 3.84

a. 20 (13.44) 4 (10.56) X =13.99, reject Ho: species segregate
8 (14.56) 18 (11.44)

b. 4 (10.56) 20 (13.44) X% =13.99, reject Ho: species overly mixed
18 (11.44) 18 (14.56)

C. 20 (18.24) 4 (5.76) X* = 1.36, fail to reject Ho
18 (19.76) 8 (6.24)

14.22 a. The contingency table with the observed and expected counts is:

Treated Untreated Total

Improved 117 74 191
(95.5) (95.5)

Not Improved 83 126 209
(104.5) (104.5)

Total 200 200 400

2 _ (117-955) (126-104.5)>
X 55 T T0as

reject Ho; there is evidence that the serum is effective.

=18.53 with 1 degree of freedom. Since y s = 3.84, we

b. Let p; = probability that a treated patient improves and let p, = probability that an
untreated patient improves. The hypotheses are Ho: p1 —p2 =0 vs. Ha: p1 — p2 # 0. Using

the procedure from Section 10.3 (derived in Ex. 10.27), we have p, = 117/200 = .585, p,
=74/200 = .37, and the “pooled” estimator P = = 4775, the test statistic is

_ pz _ .585-.37
Jpq L) [4775(5225)(%)

Since the rejection region is |z| > 1.96, we soundly reject Hy. Note that 22 = X*.

=4.3.

. From Table 6, p—value <.005.
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14.23 To test Ho: py — p2 = 0 vs. Ha: p1 — P2 # 0, the test statistic is
7 = pl — ﬁz
Jealy+ )
from Section 10.3. This is equivalent to
72 = (}51 — ﬁz) — nlnz(pl — pz)z ]
paly ++)  (n+n,)pg

2

However, note that
~ Y +Y, np +n,p,
n,+n,  n+n,
Now, consider the X* test from Ex. 14.22. The hypotheses were Ho: independence of

classification vs. Ha: dependence of classification. If Hy is true, then p; = p, (serum has
no affect). Denote the contingency table as

Treated Untreated  Total
Improved ni = np, Ni2=n,p, N+ N2
Not Improved n,; = n,g, N = n,q, N2 + Ny

Total Ni+Np=N;y Niz+Np=nN|N;+Np=n

(N +np)(Ny 4Ny ) (YY) +nyy) n. o
n+n, - n+n, =np.

The expected counts are found as follows. Ié(n” )=

So similarly, Ié(nn) =n(q, Ié(nlz) =n,p,and E(nzz) =n,§. Then, the X” statistic can
be expressed as
X2 = nlz(f)l — ﬁ)z + nlz(q1 _Q)z + n;(ﬁz — p)z + nzz(qz _Q)z

np ng n,p n,q
— n (pl — f))z + n [(1_ p1)_(1_ ﬁ)]z n nz(pz — f))z + nz[(l_ pz)_(l_ p)]z
p q p q
A _ A2 A _ A2
However, by combining terms, this is equal to X* = n, (P = P) + n,(P, ~ P) . By

pa pa
substituting the expression for p above in the numerator, this simplifies to
~ A A A 2 n n n n 2
X 2 :n_l(nlpl NP -np _nzpz] +n_2[n1p2 NP, —Np _nzpz]

n,+n, pq n,+n,

pq
_ nlnz(f)l - ﬁz)z

2 =Z* from above. Thus, the tests are equivalent.
pacn, +n,)

14.24 a. R output follows.
> pl4.24 <- matrix(c(40,56,68,84,160,144,132,116) ,byrow=T,nrow=2)
> chisq.test(pld.24)

Pearson"s Chi-squared test

data: pl4.24
X-squared = 24.3104, df = 3, p-value = 2.152e-05 <— reject Hy
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14.25

14.26

b. Denote the samples as 1, 2, 3, and 4. Then, the sample proportions that provide
parental support for the four groups are p, =40/200 =.20, p, =56/200 = .28,

p, =68/200=.34, p, =84/800 =.42.
i. A 95% CI for p; — pa is .20 —.42 £1.96,/2%80 1 239 —_ 72+ 088.

11. With 6 confidence intervals, each interval should have confidence coefficient
1 —(.05/6) =.991667. Thus, we require the critical value z op4167 = 2.638. The six
intervals are:

P1 — P2: —-08+.112
P1 —ps: — 14+ .116 (*)
P1 — P4 -22+.119 (%)
P2 —ps: —06+.122
P2 — P4: - 14+ .124 (%)
P3 — P4: —08 +.128

iii. By considering the intervals that do not contain 0, these are noted by (*).
a. Three populations (income categories) are under investigation. In each population,
members are classified as one out of the four education levels, thus creating the
multinomial.

b. X* = 19.1723 with 6 degrees of freedom, and p-value = 0.003882 so reject Ho.

c. The sample proportions are:
e at least an undergraduate degree and marginally rich: 55/100 = .55
e at least an undergraduate degree and super rich: 66/100.66

The 95% Cl is
55—.66+1.96,[23U) | 066G 1]+ 135,

a. Constructing the data using a contingency table, we have

Machine Number Defectives Nondefectives

1 16 384
2 24 376
3 9 391

In the chi-square test, X> = 7.19 with 2 degrees of freedom. Since y2; = 5.99, we can
reject the claim that the machines produce the same proportion of defectives.

b. The hypothesis of interest is Ho: p; = p> = p3 = p against an alternative that at least one
equality is not correct. The likelihood function is

3 (400 400-n;
L(p)=Hi=1[ n. ]pini(l— P
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In Q, the MLE of piis p, =n,/400,i=1,2,3. In Qo the MLE of pis p=2Xn,/1200.

Then,
n n; ! 1200-3y;
i 1 _ i
( 1200 j ( 1200 j

Vi 400-n;
H3 ni 1 _ ni
=11 400 400

Using the large sample properties, —2InA = —2(-3.689) = 7.378 with 2 degrees of
freedom. Again, since ¥ 5, = 5.99, we can reject the claim that the machines produce the

same proportion of defectives.

14.27 This exercise is similar to the others. Here, X* = 38.429 with 6 degrees of freedom.
Since ¥, = 12.59, we can conclude that age and probability of finding nodules are
dependent.

14.28 a. The chi-square statistic is X* = 10.2716 with 1 degree of freedom. Since x>, = 3.84,
we can conclude that the proportions in the two plants are different.

b. The 95% lower bound is

73—.51—1.645,220 L W) — 25 _ 11 =11,

Since the lower bound is greater than 0, this gives evidence that the proportion at the
plant with active worker participation is greater.

C. No. The chi—square test in (a) only detects a difference in proportions (equivalent to a
two—tailed alternative).
14.29 The contingency table with observed and expected counts is below.

City A CityB  Nonurban 1 Nonurban2 Total

w/ lung disease 34 42 21 18 115
(28.75)  (28.75) (28.75) (28.75)

w/o lung disease 366 358 379 382 1485
(371.25) (371.25) (371.25) (371.25)

Total 400 400 400 400 1600

a. Using the above, it is found that X* = 14.19 with 3 degrees of freedom and since y2;

= 7.81, we can conclude that there is a difference in the proportions of lung disease
for the four locations.

b. It is known that cigarette smoking contributes to lung disease. If more smokers live
in urban areas (which is possibly true), this could confound our results. Thus,
smokers should probably be excluded from the study.
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14.30 The CIis .085—.105+1.96/25519) 105699 _ _ 0 4 041,

400 400

14.31 The contingency table with observed and expected counts is below.

RI CO CA FL Total
Participate 46 63 108 121 338
(63.62) (78.63) (97.88) (97.88)
Don’t participate 149 178 192 179 698
(131.38) (162.37) (202.12) (202.12)
Total 195 241 300 300 1036

Here, X* = 21.51 with 3 degrees of freedom. Since y2, = 11.3449, we can conclude that
there is a difference in participation rates for the states.

14.32 See Section 5.9 of the text.

14.33 This is similar to the previous exercises. Here, X* = 6.18 with 2 degrees of freedom.
From Table 6, we find that .025 < p—value < .05, so there is sufficient evidence that the
attitudes are not independent of status.

14.34 R will be used here.
> pl4.34a <- matrix(c(43,48,9,44,53,3),byrow=T,nrow=2)
> chisq.test(pl4d.34a)

Pearson"s Chi-squared test
data: pl4.34a

X-squared = 3.259, df = 2, p-value = 0.1960
>

> pl4.34b <- matrix(c(4,42,41,13,3,48,35,14) ,byrow=T,nrow=2)
> chisqg.test(pl4.34b)

Pearson"s Chi-squared test

data: pl4.34b
X-squared = 1.0536, df = 3, p-value = 0.7883

Warning message:
Chi-squared approximation may be incorrect in: chisq.test(pl4.34b)

a. For those drivers who rate themselves, the p—value for the test is .1960, so there is not
enough evidence to conclude a dependence on gender and driver ratings.

b. For those drivers who rate others, the p—value for the test is .7883, so there is not
enough evidence to conclude a dependence on gender and driver ratings.

c. Note in part b, the software is warning that two cells have expected counts that are
less than 5, so the chi—square approximation may not be valid.
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R:
> pl4.35 <- matrix(c(49,43,34,31,57,62),byrow=T,nrow=2)
> pl4.35

[.11 [.2] [.3]
[1.1 49 43 34
[2.1 31 57 62
> chisq.test(pl4.35)

Pearson"s Chi-squared test

data: pl14.35
X-squared = 12.1818, df = 2, p-value = 0.002263

In the above, the test statistic is significant at the .05 significance level, so we can
conclude that the susceptibility to colds is affected by the number of relationships that
people have.

R:
> pl4.36 <- matrix(c(13,14,7,4,12,9,14,3),byrow=T,nrow=2)
> chisq.test(pl4.36)

Pearson"s Chi-squared test

data: pl4.36
X-squared = 3.6031, df = 3, p-value = 0.3076

Warning message:
Chi-squared approximation may be incorrect in: chisq.test(pl4.36)

a. From the above, we fail to reject the hypothesis that position played and knee injury
type are independent.

b. From the above, p—value = .3076.

c. From the above, p—value = .3076.

The hypotheses are Hy: Y is binomial(4, p) vs. Ha: Y isn’t binomial(4, p). The probability
mass function is

p(Y)=P(Y =y)=(*)p’=p)*?,y=0,1,2,3, 4.

Similar to Example 14.2, we can estimate p by using the MLE (see Chapter 10; think of

this as an experiment with 400 trials):

A _ number of successes __ 0(11)+1(17)+2(42)+3(21)+4(9) — 5
p " number of trials 400 :

So, the expected counts are E(ni) =100p(i) = (,4 XS)i (5 = (f‘ XS)4 ,i=0,...,4. The
observed and expected cell counts are below.

0 1 2 3 4
n; 11 17 42 21 9
é(ni) 6.25 25 375 21 6.25

Thus, X* = 8.56 with 5 — 1 — 1 = 3 degrees of freedom and the critical value is >, = 7.81.
Thus, we can reject Hp and conclude the data does not follow as binomial.
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14.38 a. The likelihood function is
eZyl

L(6) = (-1)"[In(1-0)]"

So, InL(8) =k —nlIn[In(1-06)]+ (ln G)Zinzl y, where K is a quantity that does not depend

on 0. By taking a derivative and setting this expression equal to 0, this yields

Z,ly.— :

1
(1 ejma o) 0

or equivalently

A

0

Y = - —.
—(1-0)In(1 - )

b. The hypotheses are Hy: data follow as logarithmic series vs. Ha: not Hy. From the

table, y = C2WOLEN ) — 9 105. Thus, to estimate 6, we must solve the
. . 0 .
nonlinear equation 2.105 = —, or equivalently we must find the root of

—(1-0)In(1-6)
2.105(1—6)In(1-6)+6 = 0.

By getting some help from R,

> uniroot(function(x) x + 2.101*(1-x)*log(1-x),c(.0001,.9999))
$root
[1] 0.7375882

Thus, we will use 6 =.7376. The probabilities are estimated as
p(1) = -6 = 5513, p(2)=—- 21 _ = 2033, p(3)=.1000,

In(1-.7376) 21n(1-.7376)

p(4)=.0553, p(5)=.0326, p(6)=.0201, p(7,8,...)=.0374 (by subtraction)

The expected counts are obtained by multiplying these estimated probabilities by the total
sample size of 675. The expected counts are

1 2 3 4 5 6 7+

é(ni) 372.1275 137.2275 67.5000 37.3275 22.005 13.5675 25.245

Here, X*> = 5.1708 with 7 — 1 — 1 = 5 degrees of freedom. Since >, = 11.07, we fail to
reject Ho.
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Consider row i as a single cell with rj observations falling in the cell. Then, ry, Iy, ... Iy
follow a multinomial distribution so that the likelihood function is

L(p)=(, ", Jprpe...pr.
so that

InL(p)= k+zj:1rj Inp;,
where Kk does not involve any parameters and this is subject to Z;Zl p; = 1. Because of

. .. . -1 -1
this restriction, we can substitute p, =1— zrj:l p; and r, =n— erzl r; . Thus,

lnL(p)=k+Zr,-1nlnpj+(”—Z )( Zjlp)

Thus, the n — 1 equations to solve are

oL NXN

op; _pi il_z;=llpj)

ri(l_z:pj): pi(n—zz;lll’j),i:1,2,...,['*1. ()

In order to solve these simultaneously, add them together to obtain

-2 -3

Thus, z: = nz p;, and so z Pi =+ z . Substituting this into (*) above
yields the desired result.

or equivalently

a. The model specifies a trinomial distribution with p; = p%, p> = 2p(1 — p), p3 = (1 — p)*.
Hence, the likelihood function is

L(p) = +mter P2 [2p(1 = P)]™ (1 p)™™.
The student should verify that the MLE for pis p = 2”‘”’2 . Using the given data, p =
and the (estimated) expected cell counts are E(nl) =100(.5)* = 25, E(nz) =50, and
E(n3) = 25. Using these, we find that X* =4 with 3 — 1 — 1 = 1 degree of freedom.

Thus, since ¥ 5; = 3.84 we reject Ho: there is evidence that the model is incorrect.

b. If the model specifies p = .5, it is not necessary to find the MLE as above. Thus, X*
will have 3 — 1 =2 degrees of freedom. The computed test statistic has the same value as

in part &, but since ¥ 5; = 5.99, Ho is not rejected in this case.
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14.41

14.42

The problem describes a multinomial experiment with k = 4 cells. Under Hy, the four cell
probabilities are p; = p/2, p, = p*/2 + pq, ps = ¢/2, and p4 = q*/2, but p=1 — g. To obtain
an estimate of p, the likelihood function is

L=C(p/2)"(p*/2+ pa)™(q/2)™ (a4’ /2)™,
where C is the multinomial coefficient. By substituting g =1 — p, this simplifies to
L — Cpnl+n2 (2 _ p)n2 (1 _ p)n3+2n4 )
By taking logarithms, a first derivative, and setting the expression equal to 0, we obtain

(N, +2n, +n, +2n,)p> = (3n, +4n, +2n, +4n,)p+2(n, +n,) =0

(after some algebra). So, the MLE for p is the root of this quadratic equation. Using the

supplied data and the quadratic formula, the valid solution is p = W =.9155.

Now, the estimated cell probabilities and estimated expected cell counts can be found by:

of E(ni) n;
p/2=.45775 915.50 880
P2/2+ PG =.49643 992.86 1032
G/2 =.04225 84.50 80
4> /2 =.00357 7.14 8

Then, X* = 3.26 with 4 — 1 — 1 = 2 degrees of freedom. Since x>, = 5.99, the
hypothesized model cannot be rejected.

Recall that from the description of the problem, it is required that zik:] p, = Z:(:I p, =1.
The likelihood function is given by (multiplication of two multinomial mass functions)
k nj * \Mj
L= CH]:] Pj (pj) '
where C are the multinomial coefficients. Now under Hy, this simplifies to

n +m
L, = CHJ P
This is a special case of Ex. 14.39, so the MLEs are fp, = "= and the estimated expected

n+m

) and E(m;) = mp, =m(Z) fori=1, ..., k. The chi-

n+m

counts are E(ni) =np, = n(n
square test statistic is given by

z [n — n(nnim )]2 z [m m(nn::i )]2
J =1 n;+m; ] 1 n;+m;
n+m n+m

which has a chi—square distribution with 2k —2 — (k — 1) = k — 1 degrees of freedom.

Two degrees of freedom are lost due the two conditions first mentioned in the solution of
this problem, and k — 1 degrees of freedom are lost in the estimation of cell probabilities.
Hence, a rejection region will be based on k — 1 degrees of freedom in the chi—square
distribution.
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14.43 In this exercise there are 4 binomial experiments, one at each of the four dosage levels.
So, with i =1, 2, 3, 4, and p; represents the binomial (success probability) parameter for
dosage i, we have that p; = 1 + Bi. Thus, in order to estimate 3, we form the likelihood
function (product of four binomial mass functions):

4 1000 S . _n: 4 000 n;
L(B) = Hi_l( N ](l+ iB)" (i)™ = KHH( 0 ](1 iB)" o
where K is a constant that does not involve 8. Then,

= e T 1000,

By equating this to 0, we obtaln a nonlinear function of  that must be solved numerically
(to find the root). Below is the R code that does the job; note that in the association of B
with probability and the dose levels, B must be contained in (—.25, 0):

> mle <- function(X)

+ {

+ ni <- ¢(820,650,310,50)

+ 1 <-1:4

+ temp <- sum(1000-ni)

+ return(sum(i*ni/(1+i*x))+temp/x)

+ }

>

> uniroot(mle, c(-.2499,-.0001)) <- guessed range for the parameter
$root

[1] -0.2320990

Thus, we take f =—.232 and so: p, =1-.232 =.768
p, =1+2(-.232) =.536,
P, =1+3(-.232) =.304
p, =1+4(-.232) =.072.

The observed and (estimated) expected cell counts are

Dosage 1 2 3 4

Survived 820 650 320 50
(768) (536) (304) (72)

Died 180 350 690 950
(232) (464) (696) (928)

The chi-square test statistic is X> = 74.8 with 8 — 4 — 1 = 3 degrees of freedom (see note
below). Since %, = 7.81, we can soundly reject the claim that p =1 + BD.

Note: there are 8 cells, but 5 restrictions: *pitqgi=1fori=1,2,3,4
* estimation of f.
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15.2

15.3

15.4

Let Y have a binomial distribution with » =25 and p =.5. For the two—tailed sign test,
the test rejects for extreme values (either too large or too small) of the test statistic whose
null distribution is the same as Y. So, Table 1 in Appendix III can be used to define
rejection regions that correspond to various significant levels. Thus:

Rejection region o

Y<6orY>19 PY<6)+P(Y>19)=.014
Y<T7orY>18 P(Y<T)+P(Y=>18)=.044
Y<8orY>17 PY<8)+P(Y=>17)=.108

Let p = P(blood levels are elevated after training). We will test Hy: p =.5 vs H,: p > .5.
a. Since m =15, s0 p-value = P(M > 15) = (17)5"7 +(17)5"7 +(7)5" = 0.0012.

b. Reject H,.

C. PM=>15)=PM>14.5)=P(Z>2.91)=.0018, which is very close to part a.

Let p = P(recovery rate for A exceeds B). We will test Hy: p =.5 vs H,: p #.5. The data
are:
Hospital A B  Sign(A-B)

75.0 85.4 -

69.8 83.1 -

85.7 80.2 +

74.0 74.5 -

69.0 70.0 -

83.3 81.5 +

68.9 75.4 -

77.8 79.2 -

722 85.4 -

77.4 80.4 -

SO0 AW —

a. From the above, m =2 so the p—value is given by 2P(M <2) =.110. Thus, in order to
reject Hy, it would have been necessary that the significance level o >.110. Since this
is fairly large, Hy would probably not be rejected.

b. The ttest has a normality assumption that may not be appropriate for these data.
Also, since the sample size is relatively small, a large—sample test couldn’t be used
either.

a. Let p = P(school A exceeds school B in test score). For Hy: p=.5vs H,: p # .5, the
test statistic is M = # of times school A exceeds school B in test score. From the table,
we find m =7. So, the p—value =2P(M >7)=2P(M <3)=2(.172) = .344. With a = .05,
we fail to reject Hy.

b. For the one—tailed test, Hy: p = .5 vs H,: p>.5. Here, the p—value=P(M >7)=.173
so we would still fail to reject Hy.

304
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15.6

15.7

15.8

15.9

15.10

15.11

15.12
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Let p = P(judge favors mixture B). For Hy: p =.5 vs H,: p # .5, the test statistic is M =#
of judges favoring mixture B. Since the observed value is m = 2, p—value = 2P(M < 2) =
2(.055) =.11. Thus, Hy is not rejected at the o = .05 level.

a. Let p = P(high elevation exceeds low elevation). For Hy: p =.5 vs H,: p > .5, the test
statistic is M = # of nights where high elevation exceeds low elevation. Since the
observed value is m =9, p—value = P(M > 9) = .011. Thus, the data favors H,.

b. Extreme temperatures, such as the minimum temperatures in this example, often have
skewed distributions, making the assumptions of the #test invalid.

a. Let p = P(response for stimulus 1 is greater that for stimulus 2). The hypotheses are
Hy: p=.5vs H,: p>.5, and the test statistic is M = # of times response for stimulus 1
exceeds stimulus 2. If it is required that a < .05, note that

PM<1)+PM=>38)=.04,
where M is binomial(n =9, p = .5) under Hy. Our rejection region is the set {0, 1, 8, 9}.
From the table, m = 2 so we fail to reject H,.

b. The proper test is the paired t—test. So, with Hy: p; — po =0 vs. H,: iy — pp # 0, the
summary statistics are d =-1.022 and s, = 3.467, the computed test statistic is
|-1.022] _

3.467
9

Let p = P(B exceeds A). For Hy: p=.5 vs H,: p # .5, the test statistic is M = # of
technicians for which B exceeds 4 with n = 7 (since one tied pair is deleted). The
observed value of M is 1, so the p—value =2P(M < 1) =.125, so H is not rejected.

|t|= 1.65 with 8 degrees of freedom. Since 7 y5 = 2.306, we fail to reject Hy.

a. Since two pairs are tied, n = 10. Let p = P(before exceeds after) so that Hy: p = .5 vs
H,: p>.5. From the table, m =9 so the p—value is P(M > 9) = .011. Thus, H is not
rejected with a = .01.

b. Since the observations are counts (and thus integers), the paired t—test would be
inappropriate due to its normal assumption.

There are n ranks to be assigned. Thus, 7" + 7~ = sum of all ranks = z;i =n(n+1)/2
(see Appendix I).

From Ex. 15.10, 7" = n(n+1)/2 — T". If T" > n(n+1)/4, it must be so that 7" < n(n+1)/4.
Therefore, since T=min(7", T), T=T.

a. Define d; to be the difference between the math score and the art score for the i
student,i=1,2, ..., 15. Then, 7" =14 and T = 106. So, 7= 14 and from Table 9, since
14 < 16, p—value < .01. Thus Hj is rejected.

b. Hy: identical population distributions for math and art scores vs. H,: population
distributions differ by location.
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15.13

15.14

15.15

15.16

15.17

15.18

15.19

Define d; to be the difference between school A and school B. The differences, along
with the ranks of |d;| are given below.

1 23 4 5 6 78 9 10
d; 285 4 15 12 2 7 9 -3 13
rank|d| 13 4 3 9 7 1 56 2 8

Then, 7" =49 and T =6 so T= 6. Indexing n =10 in Table 9, .02 < T < .05 so Hy would
be rejected if o = .05. This is a different decision from Ex. 15.4

Using the data from Ex. 15.6, 7" =1 and T =54,s0 T=1. From Table 9, p—value < .005
for this one—tailed test and thus H is rejected.

Here, R is used:

> x <- c¢(126,117,115,118,118,128,125,120)

>y <- ¢(130,118,125,120,121,125,130,120)

> wilcox.test(x,y,paired=T,alt="less",correct=F)

Wilcoxon signed rank test
data: x and y

V = 3.5, p-value = 0.0377
alternative hypothesis: true mu is less than O

The test statistic is 7= 3.5 so H) is rejected with a = .05.

a. The sign test statistic is m = 8. Thus, p—value = 2P(M > 8) = .226 (computed using a
binomial with » = 11 and p = .5). H, should not be rejected.

b. For the Wilcoxon signed—rank test, 7" = 51.5 and T = 14.5 with n = 11. With a = .05,
the rejection region is {7< 11} so Hj is not rejected.

From the sample, 7° = 44 and T = 11 with n = 10 (two ties). With 7= 11, we reject H,
with a = .05 using Table 9.

Using the data from Ex. 12.16:

d; 3 61 2 4 25 89 8 42 98 33 23 37 25 -18 75
dl 3 6.1 2 4 25 89 8 42 98 33 23 37 25 18 75
rank 7 12 3 10 55 14 1 11 15 8 4 9 55 2 13

Thus, 7" =118 and T =2 with n = 15. From Table 9, since T~ < 16, p—value < .005 (a
one—tailed test) so Hj is rejected.

Recall for a continuous random variable Y, the median & is a value such that P(Y > &) =
P(Y<§&)=.5. Itis desired to test Hy: § =&y vs. H,: & # &.
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a. Define D; =Y, — &) and let M = # of negative differences. Very large or very small
values of M (compared against a binomial distribution with p = .5) lead to a rejection.

b. Asin part a, define D; = Y; — & and rank the D; according to their absolute values
according to the Wilcoxon signed-rank test.

15.20 Using the results in Ex. 15.19, we have Hy: § = 15,000 vs. H,: §> 15,000 The differences
d;=y;— 15000 are:

d; -200 1900 3000 4100 -1800 3500 5000 4200 100 1500
|di 200 1900 3000 4100 1800 3500 5000 4200 100 1500
rank | 2 5 6 8 4 7 10 9 1 3

a. With the sign test, m = 2, p—value = P(M <2) =.055 (n = 10) so H, is rejected.
b. T"=49and T =6 so T=6. From Table 9, .01 < p—value < .025 so H, is rejected.

1521 a. U=4(7)+ $(4)(5) —34=4. Thus, the p—value = P(U<4)=.0364

b. U=5(9)+ 1(5)(6) —25=35. Thus, the p—value = P(U > 35) = P(U < 10) = .0559.
c. U=3(6)+ +(3)(4) —23 =1. Thus, p—value =2P(U < 1) =2(.0238) =.0476

15.22 To test: Hy: the distributions of ampakine CX-516 are equal for the two groups
H,: the distributions of ampakine CX—516 differ by a shift in location

The samples of ranks are:

Age group
20s \ 20 11 75 14 7.5 165 2 185 35 75 W,=108
65-70 \ 1 165 75 14 11 14 5 11 185 3.5 Wp=102

Thus, U=100+ 10(11)/2 — 108 =47. By Table 8§,

p—value =2P(U <47)>2P(U <39)=2(.2179) = .4358.
Thus, there is not enough evidence to conclude that the population distributions of
ampakine CX-516 are different for the two age groups.

15.23 The hypotheses to be tested are:
Hy: the population distributions for plastics 1 and 2 are equal
H,: the populations distributions differ by location

The data (with ranks in parentheses) are:

Plastic 1 15.3(2) 18.7(6) 22.3(10) 17.6(4) 19.1(7) 14.8(1)
Plastic2 21.2(9) 22.4(11) 183(5) 19.3(8) 17.1(3) 27.7(12)

By Table 8 with n; =n, =6, P(U <7) =.0465 so a = 2(.0465) = .093. The two possible
values for Uare Uy = 36 +°2 —W, =27 and Ug= 36+~ W, =9. So, U=9 and
thus H, is not rejected.
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15.24

15.25

15.26

15.27

15.28

a. Here, Ux = 81+ 202 — W, =126 - 94 =32 and Up = 81+ 02—, = 126 — 77 = 49.
Thus, U= 32 and by Table 8, p—value = 2P(U < 32) = 2(.2447) = 4894,

b. By conducting the two sample z—test, we have Hy: y1 — po =0 vs. H,: iy = o #0. The
summary statistics are y, =8.267, y, =8.133, and s; =.8675. The computed test stat.

|.1334|

.8675(Ej
9

Hj is not rejected.

is |t |= = .30 with 16 degrees of freedom. By Table 5, p—value > 2(.1) =.20 so

c. In part a, we are testing for a shift in distribution. In part b, we are testing for unequal
means. However, since in the #—test it is assumed that both samples were drawn from
normal populations with common variance, under Hy the two distributions are also equal.

With n; = ny = 15, it is found that W, =276 and W3 = 189. Note that although the actual
failure times are not given, they are not necessary:

Wy=[1+5+7+8+13+15+20+21+23+24+25+27+28+29+30]=276.
Thus, U= 354 — 276 = 69 and since E(U) = 5> = 112.5 and V(U) = 581.25,

69-112.5 —
z="== 1.80.

Since —1.80 <—z s =—1.645, we can conclude that the experimental batteries have a
longer life.

R:
> DDT <- ¢(16,5,21,19,10,5,8,2,7,2,4,9)
> Diaz <- c(7.8,1.6,1.3)

> wilcox.test(Diaz,DDT,correct=F)
Wilcoxon rank sum test

data: Diaz and DDT
W =6, p-value = 0.08271
alternative hypothesis: true mu is not equal to O

With o = .10, we can reject Hy and conclude a difference between the populations.

Calculate Uy = 4(6)+22 —W, =34 -34=0and Uz = 4(6)+ %2 W, =45 -21 =24,
Thus, we use U =0 and from Table 8, p—value =2P(U<0) = 2(.0048) =.0096. So, we
would reject Hy for a = .10.

Similar to previous exercises. With n; = n, = 12, the two possible values for U are
Un=144+22 895 =132.5and Up = 144+ 22 -210.5 = 11.5,

but since it is required to detect a shift of the “B” observations to the right of the “A”

observations, we let U= U, = 132.5. Here, we can use the large—sample approximation.

The test statistic is z = 135357072 = 3.49, and since 3.49 > z ;s = 1.645, we can reject Hy and

conclude that rats in population “B” tend to survive longer than population A.



www.elsolucionario.net

Chapter 15: Nonparametric Statistics 309

15.29

15.30

1531

Instructor’s Solutions Manual

Hy: the 4 distributions of mean leaf length are identical, vs. H,: at least two are different.
R:

> len <-
c(%.7,6.3,6.1,6.0,5.8,6.2,6.2,5.3,5.7,6.0,5.2,5.5,5.4,5.0,6,5.6,4,5.2,
3.7,3.2,3.9,4,3.5,3.6)

> site <- factor(c(rep(1,6),rep(2,6),rep(3,6),rep(4,6)))

> kruskal .test(len~site)

Kruskal-Wallis rank sum test

data: len by site
Kruskal-Wallis chi-squared = 16.974, df = 3, p-value = 0.0007155

We reject Hy and conclude that there is a difference in at least two of the four sites.

a. This is a completely randomized design.

b. R:

> prop<-c(.33,.29,.21,.32,.23,.28,.41,.34,.39,.27,.21,.30,.26,.33,.31)
> campaign <- Ffactor(c(rep(1,5),rep(2,5),rep(3,5)))

> kruskal .test(prop,campaign)

Kruskal-Wallis rank sum test

data: prop and campaign
Kruskal-Wallis chi-squared = 2.5491, df = 2, p-value = 0.2796

From the above, we cannot reject Hy.

c.R:
> wilcox.test(prop[6:10],prop[l11:15], alt="greater'™)

Wilcoxon rank sum test

data: prop[6:10] and prop[11:15]
W =19, p-value = 0.1111
alternative hypothesis: true mu is greater than O

From the above, we fail to reject Hy: we cannot conclude that campaign 2 is more
successful than campaign 3.

a. The summary statistics are: TSS = 14,288.933, SST = 2586.1333, SSE =11,702.8. To

2586.1333/2
11,702.8/12

denominator degrees of freedom. Since Fys = 3.89, we fail to reject Hy. We assumed
that the three random samples were independently drawn from separate normal
populations with common variance. Life—length data is typically right skewed.

test Hy: 1y = 1s = W, the test statistic is F' = = 1.33 with 2 numerator and 12

b. To test Hy: the population distributions are identical for the three brands, the test

statistic is H =712 (% +3 +%)— 3(16) = 1.22 with 2 degrees of freedom. Since y 3, =

5.99, we fail to reject Hy.
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15.32

15.33

15.34

a. Using R:

> time<—c(20,6.5,21,16.5,12,18.5,9,14.5,16.5,4.5,2.5,14.5,12,18.5,9,
1,9,4.5, 6.5,2.5,12)

> strain<-factor(c(rep(*'Victoria",7),rep(""Texas",7),rep("'Russian™,7)))
>

> kruskal .test(time~strain)

Kruskal-Wallis rank sum test

data: time by strain
Kruskal-Wallis chi-squared = 6.7197, df = 2, p-value = 0.03474

By the above, p—value = .03474 so there is evidence that the distributions of recovery
times are not equal.

b. R: comparing the Victoria A and Russian strains:
> wilcox.test(time[1l:7],time[15:21],correct=F)

Wilcoxon rank sum test

data: time[l:7] and time[15:21]
W = 43, p-value = 0.01733
alternative hypothesis: true mu is not equal to O

With p—value = .01733, there is sufficient evidence that the distribution of recovery times
with the two strains are different.

R:

> weight <- c(22,24,16,18,19,15,21,26,16,25,17,14,28,21,19,24,23,17,
18,13,20,21)

> temp <- factor(c(rep(38,5),rep(42,6),rep(46,6),rep(50,5)))

>

> kruskal .test(weight~temp)

Kruskal-Wallis rank sum test

data: weight by temp
Kruskal-Wallis chi-squared = 2.0404, df = 3, p-value = 0.5641

With a p—value = .5641, we fail to reject the hypothesis that the distributions of weights
are equal for the four temperatures.

The rank sums are: R, = 141, Rz = 248, and Rc = 76. To test Hy: the distributions of
percentages of plants with weevil damage are identical for the three chemicals, the test

statistic is [ =2 (4L 4 288 4 7€) 3(31) = 19,47, Since 72, = 10.5966, the p-value

30(31) \ 10 10
is less than .005 and thus we conclude that the population distributions are not equal.
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15.35 By expanding H,

2
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15.36 There are 15 possible pairings of ranks: The statistic His
R} /2-3(7)= R} —147
= oy 2R 12730 =2 (LR -147).

The possible pairings are below, along with the Value of H for each.

pairings H
(1,2) (3,4 (5,6 32/7
(1,2) (3,5 (4,0 26/7
(1,2) (3,6) (5,06) 24/7
(1,3) (2,49 (5,0) 26/7
(1,3) (2,5 &,0) 18/7
(1,3) (2,6) (4,5 14/7
(1,4 (2,3) (5,6 24/7
(1,4 (2,5 (@3,0) 8/7
1,4 (2,6) (3,5 6/7
(1,5 (2,3) (4,0) 14/7
(1,5 2,49 @G,0) 6/7
(1,5 (2,6) (3,4 2/7
(1,6) (2,3) 4,5 8/7
(1,6) (2,49 (3,5 2/7
(1,6) (2,5 (3,4 0

Thus, the null distribution of H is (each of the above values are equally likely):

h 0 277 67 87 2 187 24/7 26/7 32/7
p(h) 1/15 2/15 2/15 2/15 2/15 1/15 2/15 2/15 1/15
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15.37

15.38

15.39

R:

> score <- c(4.8,8.1,5.0,7.9,3.9,2.2,9.2,2.6,9.4,7.4,6.8,6.6,3.6,5.3,
2.1,6.2,9.6,6.5,8.5,2.0)

> anti <- factor(c(rep('1",5),rep("'11',5),rep(""'111",5),rep(""'1V",5)))
> child <- factor(c(1:5, 1:5, 1:5, 1:5))

> friedman.test(score ~ anti | child)

Friedman rank sum test

data: score and anti and child
Friedman chi-squared = 1.56, df = 3, p-value = 0.6685

a. From the above, we do not have sufficient evidence to conclude the existence of a
difference in the tastes of the antibiotics.

b. Fail to reject H,.

c. Two reasons: more children would be required and the potential for significant child
to child variability in the responses regarding the tastes.

R:

> cadmium <- ¢(162.1,199.8,220,194.4,204.3,218.9,153.7,199.6,210.7,
179,203.7,236.1,200.4,278.2,294.8,341.1,330.2,344.2)

> harvest <- c(rep(1,6),rep(2,6),rep(3,6))

> rate <- c¢(1:6,1:6,1:6)

> friedman.test(cadmium ~ rate | harvest)

Friedman rank sum test

data: cadmium and rate and harvest
Friedman chi-squared = 11.5714, df = 5, p-value = 0.04116

With o = .01 we fail to reject Hy: we cannot conclude that the cadmium concentrations
are different for the six rates of sludge application.

vV O

corrosion <- c(4.6,7.2,3.4,6.2,8.4,5.6,3.7,6.1,4.9,5.2,4.2,6.4,3.5,
5.3,6.8,4.8,3.7,6.2,4.1,5.0,4.9,7.0,3.4,5.9,7.8,5.7,4.1,6.4,4.2,5.1)
> sealant <- factor(c(rep("I1'",10),rep('11',10),rep('111",10)))

> ingot <- factor(c(1:10,1:10,1:10))

> friedman.test(corrosion~sealant]ingot)

Friedman rank sum test

data: corrosion and sealant and ingot
Friedman chi-squared = 6.6842, df = 2, p-value = 0.03536

With o = .05, we can conclude that there is a difference in the abilities of the sealers to
prevent corrosion.
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A summary of the ranked data is

Ear A B C
1 2 3 1
2 2 3 1
3 1 3 2
4 3 2 1
5 2 1 3
6 1 3 2
7 25 25 1
8 2 3 1
9 2 3 1
10 2 3 1

Thus, R = 19.5, Rg = 26.5, and Rc = 14.
To test: Hy: distributions of aflatoxin levels are equal
H,: at least two distributions differ in location

r

F, = 5825[(19.5)* +(26.5)" +(14)*]-3(10)(4) = 7.85 with 2 degrees of freedom. From

Table 6, .01 < p—value <.025 so we can reject Hy.

a. To carry out the Friedman test, we need the rank sums, R;, for each model. These can
be found by adding the ranks given for each model. For model A, R; = 8(15) = 120. For
model B, R, =4 +2(6)+7+ 8+ 9+ 2(14) =68, etc. The R; values are:

120, 68, 37, 61, 31, 87, 100, 34, 32, 62, 85, 75, 30, 71, 67

Thus, ZRz =71,948 and then F, = 71,948 - 3(8)(16)] = 65.675 with 14 degrees

of freedom. From Table 6, we find that p—value < .005 so we soundly reject the
hypothesis that the 15 distributions are equal.

8(15)(16)[

b. The highest (best) rank given to model H is lower than the lowest (worst) rank given to
model M. Thus, the value of the test statistic is m = 0. Thus, using a binomial
distribution with » = 8 and p = .5, p—value =2P(M = 0) = 1/128.

c. For the sign test, we must know whether each judge (exclusively) preferred model H or
model M. This is not given in the problem.

Hy: the probability distributions of skin irritation scores are the same for the 3 chemicals
vs. H,: at least two of the distributions differ in location.
From the table of ranks, R; = 15, R, = 19, and R; = 14. The test statistic is

F, = 8(3)(4) [(15) +(19) +(14) 1-3(8)(4)=1.75

with 2 degrees of freedom. Since y3, = 9.21034, we fail to reject Hy: there is not enough
evidence to conclude that the chemicals cause different degrees of irritation.
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1543 Ifk=2and b=n,then F, :%(Rf +R22)—9n. For Ry =2n— M and R, = n + M, then

F, =%[(2n—M)2 +(n+M)2]—9n
= 2[(dn® —4nM + M?)+ (n* +20M + M?)— 45n%]
n

= g(—.Sn2 —2nM +2M?)

n
4 2 2
=—(M*"—nM—+in")
n
=i(M—%n)2
n
M-—1
The Z statistic from Section 15.3 is Z = 2" _ i(M —+n). So, Z'=F,.
o n

15.44 Using the hints given in the problem,

Fo=2-5 (R? - 2R R+ R*)= 125 (R2 16> —(k + DR, /b + (k +1)* /4)

_ _12b 2 2 12 bk(k+1) 12b(k+)k __ 12 2
N k(k+l)zRi e B e bk(k+l)zRi —3b(k +1).

15.45 This is similar to Ex. 15.36. We need only work about the 3! = 6 possible rank pairing.
They are listed below, with the R; values and F,.. Whenb=2and k=3, F. = %ZRE —24.

Block Block
1 2 R; 1 2 R;
1 1 2 1 1 2
2 2 4 2 3 5
3 3 6 3 2 5
Fr = 4 Fr = 3
Block Block
1 2 R; 1 2 R;
1 2 3 1 2 3
2 1 3 2 3 5
3 3 6 3 1 4
F.=3 F.=1
Block Block
1 2 R; 1 2 R;
1 3 4 1 3 4
2 1 3 2 2 4
3 2 5 3 1 4
F.=1 F.=0
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Thus, with each value being equally likely, the null distribution is given by
P(F,=0)=P(F,=4)=1/6 and P(F,=1)=P(F,=3)=1/3.

Using Table 10, indexing row (5, 5):

a. P(R=2)=P(R<2)=.008 (minimum value is 2).
b. P(R <3)=.040.

c. P(R<4)=.167.

Here, n; = 5 (blacks hired), n, = 8 (whites hired), and R = 6. From Table 10,
p—value =2P(R < 6) = 2(.347) = .694.
So, there is no evidence of nonrandom racial selection.

The hypotheses are  Hy: no contagion (randomly diseased)

H,: contagion (not randomly diseased)
Since contagion would be indicated by a grouping of diseased trees, a small numer of
runs tends to support the alternative hypothesis. The computed test statistic is R =5, so
with ny = ny =5, p—value = .357 from Table 10. Thus, we cannot conclude there is
evidence of contagion.

a. To find P(R < 11) with n; = 11 and n, = 23, we can rely on the normal approximation.
Since E(R) = 212D 4 1 = 15.88 and V(R) = 6.2607, we have (in the second step the

11+23
continuity correction is applied)
PR<11)=P(R<11.5)= P(Z <%) = P(Z <-1.75) = .0401.

6.260
b. From the sequence, the observed value of R = 11. Since an unusually large or small
number of runs would imply a non-randomness of defectives, we employ a two—tailed
test. Thus, since the p—value = 2P(R < 11) = 2(.0401) = .0802, significance evidence for
non-randomness does not exist here.

a. The measurements are classified as A if they lie above the mean and B if they fall
below. The sequence of runs is given by

AAAAABBBBBBABABA
Thus, R = 7 with n; = n, = 8. Now, non—random fluctuation would be implied by a small
number of runs, so by Table 10, p—value = P(R < 7) =.217 so non—random fluctuation

cannot be concluded.

b. By dividing the data into equal parts, y, = 68.05 (first row) and y, = 67.29 (second
= .57 with 14 degrees

|68.05-67.27|

7AO66[ZJ
8

row) with Si =7.066. For the two—sample t—test, |7 |=

of freedom. Since 795 = 1.761, Hy cannot be rejected.

From Ex. 15.18, let 4 represent school 4 and let B represent school B. The sequence of
runs is given by
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15.54

15.55

Notice that the 9™ and 10™ letters and the 13™ and 14" letters in the sequence represent
the two pairs of tied observations. If the tied observations were reversed in the sequence
of runs, the value of R would remain the same: R = 13. Hence the order of the tied
observations is irrelevant.

The alternative hypothesis asserts that the two distributions are not identical. Therein, a
small number of runs would be expected since most of the observations from school 4
would fall below those from school B. So, a one—tailed test is employed (lower tail) so
the p—value = P(R < 13) = .956. Thus, we fail to reject the null hypothesis (similar with
Ex. 15.18).

Refer to Ex. 15.25. In this exercise, n; = 15 and n, = 16. If the experimental batteries
have a greater mean life, we would expect that most of the observations from plant B to
be smaller than those from plant 4. Consequently, the number of runs would be small.
To use the large sample test, note that E(R) = 16 and V(R) = 7.24137. Thus, since R = 15,
the approximate p—value is given by

P(R<15)=P(R<15.5)~ P(Z <—.1858) = .4263.
Of course, the hypotheses Hy: the two distributions are equal, would not be rejected.

R:

> grader <- c¢(9,6,7,7,5,8,2,6,1,10,9,3)

> moisture <- c(.22,.16,.17,.14,.12,.19,.10,.12,.05,.20,.16,.09)
> cor(grader,moisture,method="spearman’)

[1] 0.911818

Thus, »¢=.911818. To test for association with a = .05, index .025 in Table 11 so the
rejection region is |rg | > .591. Thus, we can safely conclude that the two variables are
correlated.

R:

> days <- ¢(30,47,26,94,67,83,36,77,43,109,56,70)

> rating <- c(4.3,3.6,4.5,2.8,3.3,2.7,4.2,3.9,3.6,2.2,3.1,2.9)
> cor.test(days, rating,method=""spearman')

Spearman®s rank correlation rho

data: days and rating
S = 537.44, p-value = 0.0001651
alternative hypothesis: true rho is not equal to O
sample estimates:
rho
-0.8791607

From the above, rs=—.8791607 and the p—value for the test Hy: there is no association is
given by p—value = .0001651. Thus, H, is rejected.

R:

> rank <- ¢(8,5,10,3,6,1,4,7,9,2)

> score <- c¢(74,81,66,83,66,94,96,70,61,86)

> cor.test(rank,score,alt = "less",method="spearman')
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Spearman®s rank correlation rho

data: rank and score
S = 304.4231, p-value = 0.001043
alternative hypothesis: true rho is less than 0
sample estimates:
rho
-0.8449887

a. From the above, r¢=—.8449887.

b. With the p—value = .001043, we can conclude that there exists a negative association
between the interview rank and test score. Note that we only showed that the
correlation is negative and not that the association has some specified level.

R:

> rating <- c(12,7,5,19,17,12,9,18,3,8,15,4)

> distance <- c¢(75,165,300,15,180,240,120,60,230,200,130,130)
> cor.test(rating,distance,alt = "less",method=""spearman')

Spearman®s rank correlation rho

data: rating and distance
S = 455.593, p-value = 0.02107
alternative hypothesis: true rho is less than 0
sample estimates:
rho
-0.5929825

a. From the above, r¢=-.5929825.
b. With the p—value = .02107, we can conclude that there exists a negative association
between rating and distance.

The ranks for the two variables of interest x; and y; corresponding the math and art,
respectively) are shown in the table below.

Student|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rx) |1 3 2 4 5 75 75 9 105 12 135 6 13,5 15 105
Ry) |5 11.5 1 2 35 85 35 13 6 15 115 7 10 14 85

Then, r, = 1501148 5) ~120(120) _ .6768 (the formula simplifies as shown since the

CY 15(1238.5)— 120
samples of ranks are identical for both math and art). From Table 11 and with o = .10,

the rejection region is |rs | > .441 and thus we can conclude that there is a correlation
between math and art scores.

R:

> bending <- c(419,407,363,360,257,622,424,359,346,556,474,441)
> twisting <- c(227,231,200,211,182,304,384,194,158,225,305,235)
> cor.test(bending, twisting,method=""spearman",alt=""greater')
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Spearman®s rank correlation rho

data: bending and twisting
S = 54, p-value = 0.001097

alternative hypothesis: true rho is greater than 0O

sample estimates:
rho
0.8111888

a. From the above, r¢=.8111888.

b. With a p—value = .001097, we can conclude that there is existence of a population

association between bending and twisting stiffness.

15.59 The data are ranked below; since there are no ties in either sample, the alternate formula

for s will be used.

R(xi)

oo

R(y:)

SN[
O |W W
OS|—=|—
S|k |+
S|
S |00
S|
OS|=|=

di

_ 6[(0)2+(0)%+..+(0)> __
Thus, rg =1 -5 =1

-0=1.

(=R ENEEN]
S |\o o

From Table 11, note that 1 >.794 so the p—value < .005 and we soundly conclude that

there is a positive correlation between the two variables.

15.60 It is found that s =.9394 with n = 10. From Table 11, the p—value < 2(.005) = .01 so we

can conclude that correlation is present.

15.61 a. Since all five judges rated the three products, this is a randomized block design.

b. Since the measurements are ordinal values and thus integers, the normal theory would

not apply.

c. Given the response to part b, we can employ the Friedman test. In R, this is (using the

numbers 1-5 to denote the judges):

> rating <- c(16,16,14,15,13,9,7,8,16,11,7,8,4,9,2)
> brand <- factor(c(rep(*'HC",5),rep(*'S",5),rep("'EB",5)))

> judge <- c(1:5,1:5,1:5)
> friedman.test(rating ~ brand | judge)

Friedman rank sum test

data: rating and brand and judge
Friedman chi-squared = 6.4, df = 2, p-value

0.04076

With the (approximate) p—value = .04076, we can conclude that the distributions for

rating the egg substitutes are not the same.
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Let p = P(gourmet A’s rating exceeds gourmet B’s rating for a given meal). The
hypothesis of interest is Hy: p =.5 vs H,: p #.5. With M = # of meals for which 4 is
superior, we find that

PM<4)+P(M=>13)= 2P(M <4)=.04904.
using a binomial calculation with n =17 (3 were ties) and p = .5. From the table, m = 8
so we fail to reject H.

Using the Wilcoxon signed-rank test,

> A <- c(6,4,7,8,2,7,9,7,2,4,6,8,4,3,6,9,9,4,4,5)
> B <- ¢(8,5,4,7,3,4,9,8,5,3,9,5,2,3,8,10,8,6,3,5)
> wilcox.test(A,B,paired=T)

Wilcoxon signed rank test

data: A and B
V = 73.5, p-value = 0.9043
alternative hypothesis: true mu is not equal to O

With the p—value = .9043, the hypothesis of equal distributions is not rejected (as in Ex.
15.63).

For the Mann—Whitney U test, W, =126 and Wz =45. So, withn; =n,=9, Us=0and
Uz = 81. From Table 8, the lower tail of the two—tailed rejection region is {U < 18} with
a=2(.0252) =.0504. With U =0, we soundly reject the null hypothesis and conclude
that the deaf children do differ in eye movement rate.

With ny =ny, =8, Uy =46.5 and Ug = 17.5. From Table 8, the hypothesis of no difference
will be rejected if U < 13 with o =2(.0249) = .0498. Since our U = 17.5, we fail to reject
Hj (same as in Ex. 13.1).

a. The measurements are ordered below according to magnitude as mentioned in the
exercise (from the “outside in”):

Instrument A B A B B B A A A
Response | 1060.21 1060.24 1060.27 1060.28 1060.30 1060.32 1060.34 1060.36 1060.40
Rank 1 3 5 7 9 8 6 4 2

To test Hy: 6°, =3 vs. H,: 67, > 6, we use the Mann—Whitney U statistic. If H,, is
true, then the measurements for 4 should be assigned lower ranks. For the significance
level, we will use a = P(U < 3) = .056. From the above table, the values are U; = 17 and
U, =3. So, we reject Hy.

b. For the two samples, s> =.00575 and s; =.00117. Thus, F=.00575/.00117 = 4.914
with 4 numerator and 3 denominator degrees of freedom. From R:

> 1 - pf(4.914,4,3)

[1] 0.1108906

Since the p—value = .1108906, H) would not be rejected.
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First, obviously P(U<2)=P(U=0)+ P(U= 1)+ P(U=2). Denoting the five
observations from samples 1 and 2 as 4 and B respectively (and n; = n, = 5), the only
sample point associated with U= 0 is

BBBBBAAAAA
because there are no A’s preceding any of the B’s. The only sample point associated with
U=1is

BBBBABAAAA
since only one A4 observation precedes a B observation. Finally, there are two sample
points associated with U = 2:

BBBABBAAAA BBBBAABAAA

Now, under the null hypothesis all of the (150) = 252 orderings are equally likely. Thus,
P(U<2)=4/252=1/63 =.0159.

Let Y =# of positive differences and let 7 = the rank sum of the positive differences.
Then, we must find P(T<2)=P(T'=0)+ P(T=1)+ P(T=2). Now, consider the three
pairs of observations and the ranked differences according to magnitude. Let d;, d>, and
d; denote the ranked differences. The possible outcomes are:

dl dz d3 Y T
+ + 4+ 3 6
-+ + 2 5
+ - + 2 4
+ + - 23
- - + 1 3
-+ -1 2
+ - - 1 1
- - - 00

Now, under H, Y is binomial with » = 3 and p = P(4 exceeds B) = .5. Thus,
P(T=0)=P(T=0,Y=0)=P(Y=0)P(T=0|Y=0)=.125(1) =.125.

Similarly, P(T=1)=P(T=1,Y=1)=P(Y=1)P(T=1|Y=1)=.375(1/3) = .125,
since conditionally when Y = 1, there are three possible values for 7 (1, 2, or 3).

Finally, A(T=2)=P(T=2,Y=1)=P(Y=1)P(T=2|Y=1)=..375(1/3) = .125, using
similar logic as in the above.

Thus, P(T<2) = .125 + .125 + .125 = .375.
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a. A composite ranking of the data is:

Line 1 Line2 Line3
19 14 2
16 10 15
12 5 4
20 13 11
3 9 1
18 17 8
21 7 6

R =109 R,=75 R;=47

Thus,

H= e e o] 320)=7.154

2122) L 7

with 2 degrees of freedom. Since y s = 5.99147, we can reject the claim that the

population distributions are equal.

a. R:

> rating <- c(20,19,20,18,17,17,11,13,15,14,16,16,15,13,18,11,8,
12,10,14,9,10)

> supervisor <- factor(c(rep('1",5),rep(C'11",6),rep(I11",5),
rep(""1V”,6)))

> kruskal .test(rating~supervisor)

Kruskal-Wallis rank sum test

data: rating by supervisor

Kruskal-Wallis chi-squared = 14.6847, df = 3, p-value = 0.002107

With a p—value = .002107, we can conclude that one or more of the supervisors tend to
receive higher ratings

b. To conduct a Mann—Whitney U test for only supervisors I and III,

> wilcox.test(rating[12:16],rating[1:5], correct=F)
Wilcoxon rank sum test
data: rating[12:16] and rating[1:5]

W =1.5, p-value = 0.02078
alternative hypothesis: true mu is not equal to O

Thus, with a p—value =.02078, we can conclude that the distributions of ratings for
supervisors I and III differ by location.
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15.71 Using Friedman’s test (people are blocks), Ry =19, R, =21.5, R3 =27.5 and R4 =32. To
test Hy: the distributions for the items are equal vs.
H,: at least two of the distributions are different

the test statistic is F, = L[Nz +(21.5)* +(27.5)* +32° ]— 3(10)(5) =6.21.

T 10(4)(5)

With 3 degrees of freedom, ¥ 3, = 7.81473 and so H, is not rejected.

15.72 InR:
> perform <- ¢(20,25,30,37,24,16,22,25,40,26,20,18,24,27,39,41,21,25)
> group <- factor(c(1:6,1:6,1:6))

> method <- factor(c(rep("lect”,6),rep("'demonst",6),rep("'machine’,6)))
> friedman.test(perform ~ method | group)

Friedman rank sum test

data: perform and method and group
Friedman chi-squared = 4.2609, df = 2, p-value = 0.1188

With a p—value = .1188, it is unwise to reject the claim of equal teach method
effectiveness, so fail to reject H,.

15.73 Following the methods given in Section 15.9, we must obtain the probability of observing
exactly Y; runs of S and Y, runs of F, where Y; + Y, = R. The joint probability mass
functions for Y; and Y, is given by

L)
=LAyl

p(yl > y2 ) = 16
8
(1) For the event R = 2, this will only occur if ¥; =1 and Y, = 1, with either the S
elements or the F' elements beginning the sequence. Thus,
P(R=2)=2p(1,1) = ;2

12,870 *
(2) For R=3, thiswill occurif ¥;=1and Y,=2or ¥, =2and Y, =1. So,
P(R=3)=p(1,2)+ p(2, 1) =5}

12,870 *
(3) Similarly, P(R=4)=2p(2,2) =2

12,870 °

(4) Likewise, P(R =5)= p(3, 2)+ p(2, 3) = 224

12,870 °

(5) In the same manor, P(R = 6)=2p(3, 3) = &

12,870 °

Thus, P(R < 6) = ZH8 2488 — 10, agreeing with the entry found in Table 10.

12,870

15.74 From Ex. 15.67, it is not difficult to see that the following pairs of events are equivalent:
(W=15}={U=0}, {W=16} ={U=2},and {W=17} = {U=3}.

Therefore, P(W<17)=P(U<3)=.0159.
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Assume there are n; “A” observations and n, “B” observations, The Mann—Whitney U
statistic is defined as
U="U

where U, is the number of 4 observations preceding the /™ B. With B, to be the i" B
observation in the combined sample after it is ranked from smallest to largest, and write
R[B;] to be the rank of the "™ ordered B in the total ranking of the combined sample.
Then, U; is the number of 4 observations the precede B(;. Now, we know there are (i — 1)
B’s that precede B, and that there are R[B(;] — 1 4A’s and B’s preceding B;. Then,

U= Zz’: U, = ZZ[R(BM) an R(B;) - an i=Wy—ny(n, +1)/2
Now, let N=n; + n,. Since W4+ Wp=N(N+ 1)/2,s0 W= N(N+ 1)/2 — W,. Plugging
this expression in to the one for U yields

U=NN+1)/2-n,(n, +1)/2-W, W—WA

2 2
_ ”1 +2mnytnytmtny—ny—ny _ m(m+l)
= 2 W, =mn, +=5 w,.

Thus, the two tests are equivalent.

Using the notation introduced in Ex. 15.65, note that

W=D R(A)=D" X,

P {R(zi) if z, is from sample 4

where

0  if z is from sample B
If Hy is true,
E(X) = RE)PLX= RGz)] + 0-P(X; = 0) = Rz)
E(X?)=[R(z )1 %
V(X)) =[RG:)F %~ (Rz) &) =[RG)P(02).
E(X,,X,)=R(z)R(z)PLX, = R(z,), X, = R(z,)] = R(z)R(z,)[2 2.

From the above, it can be found that Cov(X,, X ;) = R(z,)R(z, )[_"1<N "')]

N2(N-1)

Therefore,

EW,)=Y" E(X)=%Y" R(z)=p(240)= 0

and
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vow,) =3 V(X)+ 2. Cov(X,, X))
_ m(N= nl)z [R( )] _ 2(1(‘/]\/711) IE:[ 12/ 1R(Z )R(Z Zl 1[R(Z )] ]
= n0'n) [N(N+1)N2N+1>]_ 227;3 {E?IR(ZZ. )]2 - ZZI[R(Z,- )]2}

_ 2m(N-n)(N+D@N+D) _ m(N-n) |-N2(N+1)2 . N(N+1)(2N+1)]
- 12N N2(N-1) L 4 6

_ mny(nj+ny+1) [4N+2 _ BN+2)WN-D | _ mn, (n+n,+1)

12 L~ n(N-1) 12

From Ex. 15.75 it was shown that U= nn, + %2 W, . Thus,

E(U) =n n2 + it nl(nl+l) E(W )_ nin,
V(U) V(W ) — nlnz(nl+n2+l) )

15.77 Recall that in order to obtain 7, the Wilcoxon signed-rank statistic, the differences d; are
calculated and ranked according to absolute magnitude. Then, using the same notation as

in Ex. 15.76,
=" X,
where
Y - {R(Dl.) if D, is positive
’ 0  if D, is negative
When H, is true, p = P(D; > 0) = 1. Thus,

E(X,)=R(D,)P[X, =R(Di)]_%R(Di)

E(Xiz) = [R(Di)]ZP[Xi =R(D,)] = %[R(Di)]z

V(X)) :%[R(Di)]z :[%R(Di)]z :%[R(Di)]z

E(Xi’Xj) = R(Di)R(Dj)P[Xi =R(Di)’Xj :R(Dj)] =%R(Di)R(D‘/)'

Then, Cov(X;, X)) =0 so

ET)=Y" E(X)=13" R(D,)=4(ren)= s

V(T") = 27:1 V(X,)= z [R(D, )] _ %(n(n+1)(2n+l)) n(n+12)izn+1) .

Since 7~ =22 —T" (see Ex. 15.10),
E(T™)=E(T*) = E(T)
V(r-\)y=v(Ir)=v(T).
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15.78 Since we use X; to denote the rank of the R sample value and Y; to denote the rank of
the i™ “¥* sample value,

n _ n _ n(n+l) n 2 _ n 2 _ n(n+D)(2n+l)
Zi:lXi o Zi:1Yi T2 and Zi:lXi _Zi:lyi - 6 ’

Then, define d; = X; — Y; so that

g2 =N" 2 2\ n(n+D)(2n+l) n n(n+1)(2n+1)
S 7 = (28 )55y e

and thus

n _ n(n+hH2nt) 1 n 2
Zizl XlYl - 6 2 ZiZI di °

Now, we have

oy x-EaEy)
\/[Z -z, X,ﬂ\/[ni; - (2] ]

n* (n+D)(2n+l) ﬂz" 2 n(n+l)?
6 2 i=1 @ 4

n’ (n+1)(2n+l) n? (n+l)2
6 4

n” (n+1)(n-1) noo42
12 _%zizl di

n? (n+1)(n-1)
12

2N g2
ZZizldi

Sy S
nz(nz—l)
12

| 6y d}
n(n®-1)
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16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

Refer to Table 16.1.

a. £(10,30)

b. n=25

c. £(10,30),n=25

d. Yes

e. Posterior for the A(1,3) prior.

a.-d. Refer to Section 16.2
a.-e. Applet exercise, so answers vary.
a.-d. Applex exercise, so answers vary.

It should take more trials with a beta(10, 30) prior.

Here, L(y | p)= p(Y| p)=(;jpy(l— p)",wherey=0,1,...,nand 0<p<1. So,

f(wp)=[§]p%1—py“yXlﬁliﬁlpWWI—pﬁ*

T(o)[(B)
so that
(M T@+B) o oyt g L(a+PB) T(y+o)(n—y +P)
= Bl S 1- dp = }
my) ﬂ&jﬂaf@)p A= =T r®) Trasp)
The posterior density of p is then
g (ply)=— L FEEEB) ety gop<r,

L(y+o)l(n-y+p)
This is the identical beta density as in Example 16.1 (recall that the sum of n i.i.d.
Bernoulli random variables is binomial with n trials and success probability p).

a. The Bayes estimator is the mean of the posterior distribution, so with a beta posterior
with a =y + 1 and p =n—Yy + 3 in the prior, the posterior mean is

~ Y +1 Y 1
Ps = = + .
n+4 n+4 n+4
- E(Y)+1 np+1 . Vv np(1—
b. E(py) = I L y(py= YO TRU=P)
n+4 n+4 (n+4) (n+4)
. .o Y +1
a. From Ex. 16.6, the Bayes estimator for p is pB:E(p|Y):—2.
n+

b. This is the uniform distribution in the interval (0, 1).

c. We know that p =Y /n is an unbiased estimator for p. However, for the Bayes
estimator,

326



www.elsolucionario.net

Chapter 16: Introduction to Bayesian Methods of Inference 327
Instructor’s Solutions Manual

E(Y)+1 np+1

~+_ V) np(l-p)
n+2 n+2 and V(Ps)

(42 (n+2)
2 2
Ths, MSE(py) =V (By)+B(p, ) = B2 ML | WP B)(-2D)
d. For the unbiased estimator p, MSE(p)=V(p)=p(l —p)/n. So, holding n fixed, we
must determine the values of p such that
np(—p)+(1-2p)° _ p(-p)
(n+2)* n
The range of values of p where this is satisfied is solved in Ex. 8.17(c).

E(Ps) =

16.9 a.Here, L(y|p)=p(y|p)=(1-p)" "' p,wherey=1,2,...and0<p<1. So,

(.9 == pxp SE P A=)
so that
CET@HB) g T(@tB) Do+ DIy +B-1)
"= are ™ P P R ore ryrarp
The posterior density of p is then
0'(ply)=—EEAEY) e pyr2 g<p<l.

IMNa+DI(+y-1)
This is a beta density with shape parameters o’ =a+ landp =p+y— 1.

b. The Bayes estimators are
N o+l
ey pB_E(plY)_—a+B+Y’
B B 3 5 _ at+l (a+2)(a+1)
(2) [pd-pls =E(P[Y)-E(P"Y) 0 Pty (P rY I tpiY)
3 (a+DP+Y -1
(o BHY +D)(a+ptY)’

where the second expectation was solved using the result from Ex. 4.200. (Alternately,

1
the answer could be found by solving E[ p(1-p)|Y]= J p(l-p)g (p|Y)dp.
0

16.10 a. The joint density of the random sample and 0 is given by the product of the marginal
densities multiplied by the gamma prior:
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0“" exp(—0/P)

(Vi ¥0r®) = [T, Ocxp(-6y, )]r( B

n+a-1 n+a-—1
o 5L o

() () DINES

b. m(y,,....¥,) T ) J 0" e [ / nB }de,butthis integral resembles
0

BZi:l yi+1
B

that of a gamma density with shape parameter n + a and scale parameter Zn—
BY y, +1
i=1 71

Thus, the solution is m(y,,...,Y,) =

1 B )
(o) (n+8)[[32:11y,+1} '

C. The solution follows from parts (a) and (b) above.

d. Using the result in Ex. 4.111,

1

g =E(u[Y)=E1/6]Y) = 5

o —1) Lzz Y, +1(n+al)]

BleY'+l le' 1

B(n+0c—1) n+oa-1 B(n+a—l)

e. The prior mean for 1/6 is E(1/6) = (again by Ex. 4.111). Thus, [i; can be

Pla—1)

N _Y—( n )4_ 1 ( Ot—l ]
He = n+ta-1) Bla-1){n+a-1)

which is a weighted average of the MLE and the prior mean.

written as

f. We know that Y is unbiased; thus E(Y ) == 1/0. Therefore,

A n 1 a-1 Y 1 n 1 o-1
E(fg)= E(Y)(n+a—1j+B(a—l)(”w—lj_ e(n+a—1)+[3(oc—1)(n+ot—l)

Therefore, [1; is biased. However, it is asymptotically unbiased since
E(i;)-1/6 0.

Also,
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V<aB>=V<Y‘)( i j= 1( i j=i+—>0.

n+toa-1) onln+a-1) 0 (n+a-1)

So, iy —%—>1/6 and thus it is consistent.

16.11 a. The joint density of U and A is

_ (k)" exp(—n\) y 1
- u! [(0)B®
A exp(—nh —A/B)

f(u,2)=p(u|r)g(r) A exp(=A/B)
— nu
CUuIl(o)B®

_ n" purot eXp|:— }\/( B ]:|
ull(a)B” np+1

b. m(u) = n—aj Aot exp{— 7/ (BH dA , but this integral resembles that of a
ull'(a)B” 5 np+1

gamma density with shape parameter U + o and scale parameter

. Thus, the
np+1

solution is m(u) = ﬁr(u + oc)[%) .

C. The result follows from parts (a) and (b) above.

d. Ay =EA|U)=a'B = (U +a)[nBB+lj'

e. The prior mean for A is E(A) = afy. From the above,

C o B \_¢[ B 1
7“B_(Zi1Yi+a{nﬁ+]j_Y(nﬁ+lj+aﬁ[n[3+lj’

which is a weighted average of the MLE and the prior mean.

f. We know that Y is unbiased; thus E(Y ) =\ Therefore,

- nB 1 _ nB !
E“B)—EW)[—nBHj*“B(an] K(nﬁﬂjmﬁ(nﬁﬂj'

So, A is biased but it is asymptotically unbiased since
E(hg) —L— 0.

Also,
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oo Y A g ), np
V(kB)_V(Y)(nBHj _nLnBHJ 7L(n[3+1)2 -0

So, Ay —E—> A and thus it is consistent.

16.12 First, it is given that W = vU = VZ‘:‘:1 (Y, —u,)’ is chi-square with n degrees of freedom.

Then, the density function for U (conditioned on V) is given by

1 n/2-1 __—uv/2 1 n/2-1,,n/2 5—uv/2
foulv)=v/f,(UW)=v———— =—Uu e .
u (V) =M ) F(n/2)2”/2( ) r'(n/2)2"">
a. The joint density of U and Vv is then
1 1
f(uv)=f,(ulv)g(v) =——u""*"'v"?exp(-uv/2)x vl exp(-v/
(u,v) = fy (ulv)g(v) F(n/ 22" p( ) (o) p(-v/P)
1

u2 v exp(—uv /2 —v/B)

T T(n/2)[(a)2"2B"

1 n/2-1,,n/2+a-1 |: /( 2B ):|
= u Vv exp| —V/| ——— ||
I(n/2)I'(a)2"*B* up+2

b. m(u)= ! > u"/z_ljvnm‘)‘_1 expl —V 2P dv, but this integral
r(n/2)f2"p* 1 up+2

resembles that of a gamma density with shape parameter n/2 + a and scale parameter

n/2-1 n/2+o
2p . Thus, the solution is m(u) = u ——I(n/2+a) 2P .
up+2 I'(n/2)'(a)2" "B up+2

C. The result follows from parts (a) and (b) above.

d. Using the result in Ex. 4.111(e),

62 —E(c’ |U)=E(/v|U)=— =] Up+2)_ UB+2
B'(a —=1) n/2+a—-1{ 2P B(n+2a-2)

e. The prior mean for 6° =1/v = . From the above,

1
pla—1)

3 UB+2 U( n j 1 ( 2(a—1) ]
GB= = — + .
B(n+20-2) nin+2a-2) Bla-1){n+20-2

16.13 a. (.099, .710)
b. Both probabilities are .025.
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c. P(.099 <p <.710) = .95.
d.-g. Answers vary.
h. The credible intervals should decrease in width with larger sample sizes.

16.14 a.-b. Answers vary.

16.15 Withy =4, n=25, and a beta(1, 3) prior, the posterior distribution for p is beta(5, 24).
Using R, the lower and upper endpoints of the 95% credible interval are given by:
> gbeta(.025,5,24)
[1] 0.06064291
> gbeta(.975,5,24)
[1] 0.3266527

16.16 Withy=4,n=25, and a beta(1, 1) prior, the posterior distribution for p is beta(5, 22).

Using R, the lower and upper endpoints of the 95% credible interval are given by:
> gbeta(.025,5,22)

[1] 0.06554811

> gbeta(.975,5,22)

[1] 0.3486788

This i1s a wider interval than what was obtained in Ex. 16.15.

16.17 Withy =6 and a beta(10, 5) prior, the posterior distribution for p is beta(11, 10). Using

R, the lower and upper endpoints of the 80% credible interval for p are given by:
> gbeta(.10,11,10)

[1] 0.3847514

> gbeta(.90,11,10)

[1] 0.6618291

16.18 Withn=15, Zin:l y; =30.27, and a gamma(2.3, 0.4) prior, the posterior distribution for

0 is gamma(17.3, .030516). Using R, the lower and upper endpoints of the 80% credible

interval for 0 are given by

> ggamma(-10,shape=17.3,scale=.0305167)
[1] 0.3731982

> ggamma(.90,shape=17.3,scale=.0305167)
[1] 0.6957321

The 80% credible interval for 0 is (.3732, .6957). To create a 80% credible interval for
1/8, the end points of the previous interval can be inverted:

3732 <0 <.6957
1/(.3732) > 1/6 > 1/(.6957)

Since 1/(.6957) = 1.4374 and 1/(.3732) = 2.6795, the 80% credible interval for 1/0 is
(1.4374, 2.6795).
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16.19 With n=25, Zin:l y; =174, and a gamma(2, 3) prior, the posterior distribution for A is

gamma(176, .0394739). Using R, the lower and upper endpoints of the 95% credible

interval for A are given by

> ggamma(.025,shape=176,scale=.0394739)
[1] 5-958895

> ggamma(-975,shape=176,scale=.0394739)
[1] 8.010663

16.20 With n =8, u=.8579, and a gamma(5, 2) prior, the posterior distribution for v is
gamma(9, 1.0764842). Using R, the lower and upper endpoints of the 90% credible

interval for v are given by

> ggamma( -05,shape=9,scale=1.0764842)
[1] 5-054338

> ggamma(.95,shape=9,scale=1.0764842)
[1] 15.53867

The 90% credible interval for v is (5.054, 15.539). Similar to Ex. 16.18, the 90% credible
interval for o® = 1/v is found by inverting the endpoints of the credible interval for v,
given by (.0644, .1979).

16.21 From Ex. 6.15, the posterior distribution of p is beta(5, 24). Now, we can find
P (peQ,)=P (p<.3) by (inR):

> pbeta(-3,5,24)
[1] 0.9525731

Therefore, P"(peQ,)=P"(p>.3) =1-.9525731 = .0474269. Since the probability
associated with Hy is much larger, our decision is to not reject Hy.

16.22 From Ex. 6.16, the posterior distribution of p is beta(5, 22). We can find
P'(peQ,) =P (p<.3) by (inR):

> pbeta(.3,5,22)
[1] 0.9266975

Therefore, P (peQ,)=P (p=>.3) =1-.9266975 = .0733025. Since the probability
associated with Hy is much larger, our decision is to not reject Hy.

16.23 From Ex. 6.17, the posterior distribution of p is beta(11, 10). Thus,
P (peQ,)=P"(p<.4) is given by (in R):

> pbeta(.4,11,10)
[1] 0.1275212

Therefore, P'(peQ,)=P"(p>.4) =1-.1275212 = .8724788. Since the probability
associated with H, is much larger, our decision is to reject Hy.

16.24 From Ex. 16.18, the posterior distribution for 6 is gamma(17.3, .0305). To test
Ho: 0> .5vs. Ha: 6 <5,
we calculate P (0e€Q,)=P"(0>.5) as:
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> 1 - pgamma(.5,shape=17.3,scale=.0305)
[1] 0.5561767

Therefore, P"(0eQ,)=P (0>.5) =1 —.5561767 = .4438233. The probability
associated with Hy is larger (but only marginally so), so our decision is to not reject H.

16.25 From Ex. 16.19, the posterior distribution for A is gamma(176, .0395). Thus,
P"(LeQ,)=P (A >6) is found by

> 1 - pgamma(6,shape=176,scale=.0395)
[1] 0.9700498

Therefore, P*(A € Q)= P'(A <6) =1-.9700498 = .0299502. Since the probability
associated with Hy is much larger, our decision is to not reject Hy.

16.26 From Ex. 16.20, the posterior distribution for v is gamma(9, 1.0765). To test:
Ho: v <10 vs. Ha: v > 10,
we calculate P (veQ,)=P (v<10) as

> pgamma(10,9, 1.0765)
[1] 0.7464786

Therefore, P"(A € Q,)=P"(v>10) = 1 —.7464786 = .2535214. Since the probability
associated with Hy is larger, our decision is to not reject Hy.
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